BD 089 747

AUTHOR
TITLE

INSTITUTIOR
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENYT RESUME ~
IR 000 459

Lukas, George; Feurzeig, Wallace

Technology for Analysis of Student Interactions With
Complex Programs. Final Report for Period January
1972-February 1973.

Bolt, Beranek and Newman, Inc., Cambridge, Mass.
National Science Poundation, Washington, D.C.
BOLTBER-74-2625 : :

Peb 73

221p.

MP-$0.75 KEC~$10.20 PLUS POSTAGE

Algorithms; *College Students; (cmputer Assisted
Instruction; *Computer Programs; Computer Science;
*Computer Science Bducation; *Educational Diagnosis;
Higher Education; Man Machine Systems; Problen
Solving; Program Descriptions; Program Evaluation;
*Programing; Programing Languages

*Dribble File; Heuristic Methods; L0GO

A description is provided of a computer systen

designed to aid in the analysis of student programing work. The first
section of the report consists of an overview and user's quide. In
it,. the system input is described in terms of a "dribble file" which
records all student inputs generated; also an introduction is given
to the aids developed for monitoring and analyzing student programing
activities. The next section offers a detailed description of the
systea, including full program documentation, while the final two
parts deal with the standard analysis packages developed to
facilitate applications and with examples of system use. Details are
provided on the manner in which users can scan structures derived
from the "dribble files", choosing data of interest, fors of
presentation, and level of interpretation and moving across these
freely in time. General facilities for developing new analysis
procedures are described and a technical description of the systeam's
LOGO language is appended. (Author) :

BOLT BERANEK +tAND NEWMAN INC

C ONSULT I NG 0O E VYV ELOP?P MENT R E S E A R CKH

>

BOLTBER-74-2625

TECHNOLOGY FOR ANALYSIS OF STUDENT
INTERACTIONS WITH COMPLEX PROGRAMS

-+ George Lukas

U S DEPARY
Wallace Feurzeig EDUCATION & W FARE
LINSTITUTE
Bolt Beranek and Newman Inc. 5. Docune EOUCATION oF
* HAS
50 Moulton Street DUED EXACIY L ReCEED T non
" GaNIZAYION ORIGIN
ATING (T P
Cambridge, Mass. 02138 STATED o Ny or LN O 0PI 10N
‘\ SENT OF FICIAL NATIONAL INSTITUTE Of

’ EDUCATION POSITION OR POLICY

g

February 1973
Final Report for Period January 1972 - February 1973

Prepared for

NATIONAL SCIENCE FOUNDATION

Education Directorate

Office of Experimental Projects and Programs
5225 Wisconsin Ave., N.W.

Washington, D. C. 20f%7

Contract NSF-C 708

JAruitoxt provided

CAMBRIDGE WASHINGTON, 0.C. CHICAGO HOUSTON LOS ANGELES SAN FRANCISCO

b e s dee

BIBLIOGRAPHIC DATA [1. Report No. 2 3, Recipient’s Accession No.

SHEET

e s T Sobte 5. Report Date
Technology for Analysis of Student Interactions February 1973
With Complex Programs 6

7. Awh . 8. Pecforming Organization Rept.
whot(s} George Lukas and Wallace Feurzeig Ngt or2m6m51s ganization Rept

9. Performing Organization Name and Address

10, Project/Task/Wotk Unit No.
Bolt Beranek and Newman Inc.

50 Moulton Streect

11, Contract/Grant Mo.
Cambridge, Mass. 02138

NSF-C 708

12. Sponsoring Otganization Name and Address 13. Type of Report & Period

Covere Final
Natiornal Science Foundation 3 1972-Fob. 1973
5225 Wisconsin Ave., N.W,. an. -Feb,

Washington, D. C. 20550 ' M-

15. Supplementary Notes

16, Abstraces g computer system to aid in the analysis of student programming

work is described. The input to this system is a "dribble file" record-
ing all student inputs generated during a student computer interaction.
The system provides teachers and researchers a set of aids for monitoring
and analyzing the student's programming activity. The user can design
the particular form of analysis he desires., During the analysis he can
scan structures derived from the dribble files dynamically, choosing data
of interest, form of presentation, and level of interpretation, and
moving across these freely in time. The design and implementation of
this analysis system are described. 1Its standard mode of use is
illustrated and special analysis packages are developed. General
facilities for developing new analysis procedures are described.

Examples show the application of these various capabilities.

17. Key Words and Document Analysis. 17a. Descriptors

Computer Programming
Education

Psychology

Problem Solving
Heuristic Methods
Reasoning

Algorithms
Diagnostic Routines
Monitor Routines

17b. Identifiers/Open-Ended Tetms

V7¢. COSAT! Field/Group 05'-03 05-09

09-02
18. Availability Statemert 19..§ccuri:y Class (This 2). No. of Pages
eport)
UNCLASSIFIED
Dalease unlimited 20. Sccurity Class (Fhis 22, Price
Q Page
: §incrassiFieD

mic38 L16-70}

USCOMM-OC 40329171

Y

Report No. 2625 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

Page
ABSTRACT ii
INTRODUCTION iii
Part 1. User's Guide
1. Programming Languages in Teaching -
2. An Example of Use of the LOGO Language 1-2
3. Dribble Files . . . ¢ v v v v v v e e e e e e e e e -
4. Building a Language and Monitor System for Processing
Dribble Files & v ¢ v v v v v v v v 4 e v e v 1-13
5. The Raw Dribble File v v ¢« v v v v v v o o « v 1-22
6. Preprocessing of the Raw Dribble File, . . 1-2%
7. Parsing of the Dribble File . . . + v ¢« + & ¢« « « « . 1-28
8. An Example of the Output of Parsing 1-35
9. RUNning the Dribble File+ ¢« « v « ¢« ¢« v « . 1-38
Part 2. System Documentation
1. Introduction to System Documentation . . . « . « . . . 2-1
2. The Use of LOGO as Both System and Object Language . . 2-2
3. The Preprocessing . . . ¢ « . i v v v v v v v v v .. 2-4
4. Parsing . . o 0 0 0 e e e e e e e e e e e e e e e e 27
5. Running . . 0 L L 0 e e e e e e e e e e e e e . 2-20
6. The Display Facility . . ¢« + v . v v v v « « 4 & « o . 2-35
Part 3. Analysis Package
1. Introduction to Analysis Package « « .+ . 3-1
2. User Definition of Analysis Procedures . . « . +« .+ . . 3-1
3. User Augmentation of the Parsing Procedures 3-4

4. Aids for Execution and Debugging of Student Procedures 3-8

Part 4. Examples of System Use

1. Introduction ¢ & v 4 v 4 v h h e e e e e e e . 4.1
2, Example 1 . & ¢ ¢ ¢ v vt e 4 e e e e e e e e e e . 4-2
3. Example 2 . . . o v v 4 v 0 e e e e s e e e e e e . 4214
4. Example 3 . o . v 0 v v 0 0t e e e e e e e e e e e 4-30
S. Example 4

APPENDIX A

. .]] . . L] 4-36

Report No. 2625 Bolt Beranek and Newman Inc,

STUDENT INTERACTIONS WITH COMPLEX PROGRAMS
ABSTLRACT

The individualization in classroom work made possible by
student use of high level programming languages creates new
educational and technological challenges. Unless severe time or
usage constraints are imposed on their mode of.work, the quantity
of information generated by the students is much too large for
either a teacher or researcher to handle effectively. The
computer itself, however, can be used to great advantage for
those forms of analysis of student programming work which do not
totally depend on problem content. "Dribble files'" can be
generated containing all the student-computer interaction, and a
computer system developed to help teachers or researchers monitor
and analyze these dribble files.

A facility of this ki;d has been developed. It provides
suitable primitives and procedure-writing capabilities to enable
the user to design the exa«t form of analysis he desires. During
the analysis the user can scan forms derived from the dribble
files dynamically, choosing the data of interest, form of
presentation, and level of interpretation, and moving across
these freely in time,.

The design and implementation of this analysis system are
described. Its standard mode of use is illustrated and special
analyéis packages are developed. General facilities that permit
users. to develop their own analysis procedures are described.
Exarmples are given to illustrate application of these various
capabilities,

Report No. 2625

INTRODUCTION

Bolt Beranek and Newman Inc,

Programming languages provide contexts within which a great

variety of formal processes can
performed. They permit a great
student work both in the number

Well as the number of different

be concretely represented and
scope for individuality of

as
Thus,

of things students can do,

ways they can do then. at

least in principle, it is .easonable to expect such languages to

play an increasingly important role in teaching.

This same

variety and individuality, however, gives rise to practical

problems. Although less direct

required when students use a programming language,

supervision by the instructor is

the amount of

student-generated material he must deal with is very much greater.
And the occasional help with 'debugging" and extending programs
that the instructor must provide requires that he easily and

efficiently follow each student'

s current work.

In practice the instructor's involvement must be substan-

tially reduced -- there are typically far too many students for

an instructor and lab assistants to handle in this way.
situation can, we believe, be substantially improved.

tention is that the great manipulative power the computer provides

This

Our con-

the students can also be made accessible to the instructor for

more efficiently monitoring and

analyzing the students' work.

This report describes the design and development of a system

directed to this end.

Part 1 of the report is a user's guide and overview of the

Ssystem.

full program documentation;

Part 2 is a detailed description of the system including

Part 3 contains standard analysis

packages developed to facilitate applications; Part 4 contains

examples of system use.
language is appended.

A technical description of the LOGO

iii

Report No. 2625 Bolt Beranek and Newman Inc,

Part 1.

User's Guide

1-0

Report No. 262§ Bolt Beranek and Newman Inc.

1. Programming Languages in Teaching

Programming languages are coming into extensive use in under-
graduate instruction. In addition to languages such as FORTRAN,
JOSS, and APL, originally designed for scientific applications,
some, like BASIC and LOGO, were expressly designed for student
use. These languages can be employed in a number of different
ways, encompassing a great variety of teaching modes as well as
student uses. In some situations the Computer is used primarily
for evaluating complex expressions; sometimes it is used for
parametric study of previously-defined models; sometimes for
exploring complex data structures; sometimes the student develops
his own programs in connection with specific course projects;
and sometimes the programming language is used as the conceptual
framework for developing some of the main ideas in the subject
taught. These forms serve to illustrate the diversity of
approach possible. A balanced design will combine several of

them in a single course or even in the study of a single topic.,

Utilization of a computer and a programming language does
not, in itself, impose the need for new teaching strategies.
Practical problems develop only in those cases where students are
expected to carry out their own programming projects, whether or
not there is extensive guidance. Experience shows that, here,
great diversity and individuality in work arises and there is
considerable divergence among students even when they are
nominally working on the same problem. One consequence is that
student errors can lie much deeper and be correspondingly more
diffigult to diagnose, Further, the teacher must understand the
implications of a large number of alternative approaches to the
solution of a given problem.

Report No.v2§25 Bolt Beranek and Newman Inc,

A good teacher always faces these difficulties. But in the
teaching situations that develop from this way of using program-
ming languages, his difficulties are made particularly critical
by the amount of individual monitoring required. To examine |
this problem more concretely, it is useful to sqe the character-
istics of actual student programming work in soméldetail; we will
therefore study student work in part of a program‘ing-oriented
sequence used in undergraduate instruction (at the¢ University of
Massachusetts in 1971). To provide a context, wé.first outline
the central ideas developed in the teaching guide associated
with this undergraduate sequence.

2. An Example of Usc of the LOGO Language

A programming language has a central use in the teaching
discussed here. We illustrate this rolé next with a specific
example. We designed the following sequence, and others like it,
as models for guiding teachers. This particular sequence served
that role in an introductory course in undergraduate mathematics
given at the University of Massachusetts, Boston, in the spring
1971 term. The course was open only to students of low mathe-
matical ability. Thus, we chose mathematical material which,

at least on the surface, appeared nonmathematical,

In this sequence we trace the development of some programs
for making pictures, specifically geometric figures, on a tele-
typewriter. We use the LOGO programming language* for this
because we feel that crucial formal and heuristic issues are more
clearly exposed with LOGO than with other programming languages.
We begin by writing straightforward procedures for drawing
figures of fixed shape and size. The first such procedures are

*A description of the LOGO language is given in Appendix A,

IToxt Provided by ERI

Report No. 2625 Bolt Beranck and Newman Inc.

pointillistic, each command typing out a single point of the
figure. This is a tedious and mathematically uninteresting
approach. A considerable improvement comes about from noting
that we can write a procedure for typing out the figure a whdle
line at a time. This procedure is called MARK :N: :X: and is
written entirely in terms of LOGO primitives, Here is its
definition.

TO MARK :N: :X:

1 TEST IS :N: ¢ (When there are no more :X:'s to

2 IFTRUE STOP type, stop.)

3 TYPE :X: (Otherwise, type out an :X:)

4 MARK (:N:-1) (And repeat the procedure :N:-1

END more times.)

For example:

MARK 18 40 (We underline the student's typing)

I

We can write procedures using MARK to draw geometric figures
of many different kinds. We can easily generate figures with
vertical symmetry about some fixed line, by extending MARK to
handle the details of formatting. The procedure MIDDLE :N: :X:
neatly centers the row of :N:; :X:'s in the middle of the line.

TO MIDDLE :N: :X:

1 MARK (QUOTIENT OF (6f-:N:) {Indent the appropriate number
AND 2) :BLANK: of spaces;

2 MARK :N: :X: (and then type out :N: :X:'s)

END

Thus:

MIDDLE 18 "+"

AR R AR R RS EE R R LR

1-3

Report No. 2625 Bolt Beran:\ and Newman Inc,

MIDDLE has direct and straightforward application for
writing procedures for drawing general classes of simple symmetric
figures -- triangles, rectangles, and trapezoids of varied sizes
and shapes. For example, we write a procedure TRAPEZOID and use
it to make drawings such as the following.

TRAPEZOID 3 11 2 TRAPEZOID 13 5 -2
+4 F R R
+4 444 B S S OrIF OO
tHe+ 444 tEE b b4
ittt b i bt : tHet 4+
b4t bbb 4t +H+4+

We can use such procedures as the basis for further drawing
procedures. Here, for example, is a procedure for drawing
octagons, where :A: is the top base, :B: is the middle diameter,
and !STEP: is the step size.

TO OCTAGON :A: :B: :STEP:

1 TRAPEZOID :A: :B: :STEP:

2 RECTANGLE :B: (QUOTIENT OF (:B:-:A:)
AND :STEP:)

3 TRAPEZOID :B: :A: (-:STEP:)

END

A next level of procedures generatecs sequences of figures --
hexagons of increasing size, oscillating diamond patterns, and
the like., For example, we write a procedure PATTERN which uses
a random process to create a procedure for drawing patterns that
are syminetric about a horizontal line as well as a vertical one.

The following drawings were made by procedures generated by‘
PATTERN.

1-4

Report No. 2625

+
+++
+
+EtEE bt
L EXE R R
+H4t+
+4+4
+Hi++
+E+EEE et
AR R
hEE 4t bbbt e+
LRI R R T R TR
R R R
I TR
R R R T L
R TR Y
+EEEEEE 44
+H+++
+++
++t++
tHEE et
+EEEtet et
+
++4
+

Using the procedures written

Bolt Beranek and Newman Inc,

+
++ 4
++++4+
++++4++ 4
++++++++ 4+
t+++++ 44+ +
AR A XL EEEE R E R EX,
I EEE R EEEEE R E LR RN LI
AR AR E AR E A R R R EE R R RY
++'0:++++++++++++++++++++++++
AR R R LI E L E R R LR R LR R R R N R .
AR SR AL R R L L E R R R R R R R X R L LR X
AL R E LSRR R R ERT R R LR
AR LR RS R R R R E KRR R
AR E R EER LR
+++t++++t++ 4+
++++t++ 4+ 4
+++ 4444
++++ 4+
+++
+

thus far, the student could

generate a large number of different geometric shapes, and the

writing of such a sequence of procedures represents a considerable

achievement on his part.

The foundations of geometry, however,

lie in the transformation of geomectric objects, not merely in

their portrayal. Our next goal,

then, is to write procedures for

performing standard transformations of geometric figures., Such

transformations include translation, rotation, and reflection,

both with respect to a given point and with respect to a given

line., Procedures to generate the union and intersection of the

sets of points defining two geometric objects are also useful.

And, we need a procedure DRAW which plots any given set of points.

ERIC

Aruitoxt provided by Eic:

Report No. 2625 Bolt Beranek and Newman Inc.

To write these procedures we need a different representation
for geometric objects, one which can be retained within the com--
puter. (Clearly we do not have such a representation thus far --
our current objects are generated and drawn one line at a time.)
Porhaps the simplest such representation is a list of pairs of
numbers, each pair -epresenting one point of the object., Then
it is easy to write procedures, such as the following, which
reflect a set of points about the x-axis,

TO REFLECTX :PAIR LIST: (:PAIR LIST: is the 1list of X Y
: number pairs)
1 TEST IS :PAIR LIST: :EMPTY: {(Are there any points left on
2 IFTRUE OUTPUT :EMPTY: tPAIR LIST:? 1If not, terminate
procedurao)

3 OUTPUT LIST OF
FIRST OF :PAIR LIST:
NEGATIVE OF SECOND OF :PAIR LIST:
REFLECTX OF (BUTFIRST2 OF :PAIR LIST:)
(Otherwise, output a list of the
X coordinate and the negative of
the Y coordinate of the first
number pair on :PAIR LIST:, and
REFLECTX applied to the pair list
obtained by deleting the first
END number pair on :PAIR LIST:)

Thus, for example:

PRINT REFLECTX OF "1 2 4 3 7 11 2 -1"
1 -2 4 -3 7 -11 2 1

Using this and two similar procedures, one for reflecting
about the 45 degree line through the origin, and the other for
reflecting about the Y-axis, we can now write a procedure for
random generation of figures having eightfold symmetry.

1-6 -

Report MNo. 2625

TO EIGHTFOLD :N:

1 MAKE "PAIR LIST"
RANDOMLIST OF :N:
2 MAKE "PAIR LIST"
UNION OF (:PAIR LIST:) AND
(REFLECT45 OF tPAIR LIST:)

3 MAKE "PAIR LIST"
UNION OF (:PAIR LIST:)
(REFLECTY OF :PAIR LIST:)
4 MAKE "PAIR LIST"
UNION OF (:PAIR LIST:) AND
- (REFLECTX OF :PAIR LIST:)
S DRAW ORDER OF :PAIR LIST:

AND

||+||

Bolt Beranek and Newman Inc.

3

(:N: is the number of pairs on the
pair list that will be generated)
(Generate a random 1ist of :N:
pairs, :PAIR LIST:) i

(Form the union of :PAIR LIST: and
the pair list formed by reflecting
it around the 45 degree line, and
make this the new :PAIR LIST:)
(Form the union of the new list and
its reflection about the Y-axis)

(Do the same with the resulting list
and its reflection about the X-axis)

(Put the resulting pair list in
lexicographic order and plot it
using +'s)

END
EIGHTFOLD generates random drawings such as the following.
+ + + +
+++ + + + +
+
++ ++ + + + + + +
++ + + + +
+ + ++
+
+4+ 4+ + + :
+ +
+ +
+ +
+ + + + + +
+ + + +
+ +

Using such basic transformation procedures we can study

generél Euclidean transformations.

For example, we can develop

methods for determining whether two randomly oriented polygons are

congruent.

Proceeding in this fashion we steadily progress from

pre-mathematics to material of genuine mathematical content.

1-7

Report No. 2625 Bolt Beranek and Newman Inc,

3. Dribble Files

What we just sketched was an "ideal" teaching sequence, Let
us look next at what students actually did. We will not look at
the entire development of a sequence of drawing programs, only at,
the form and organization of some nearly final versions derived
from student interactions., Even in this condensed form, very
specific information about individual student work, of interest
for both research and teaching, is obtained.

We begin by looking at examples of real student interactions
in raw form, obtained from "dribble files" generated by the
student and recorded by the computer while he works. We then
consider more generally the work that students did to see what

conceptual and pedagogic issues arise in the course of that work.

The computer can present the student's work to the instructor
in various ways. One important mode of presentation is periodic
listings of the student's own program files, The student gener-
ally updates-his program files each working session and these
files contain nearly all the programs he writes. The instructor
needs to know, however, not only the programs generated by the
student but also how these were written, debugged, edited, and
used,

One way of giving him this information is through hard-copy
transcripts of the student's entire interaction with the computer.
These can be obtained simply by using two-copy paper in the tele-
typewriter. All the required information is acquired naturally
and inexpensively in this way,

1-8

Report No. 2625 Bolt Beranek and Newman Inc.

Unfortunately, the information thus obtained is not in a
form that can easily be used. To make this information available
for computer retrieval and processing, we need to store it as it
is produced. Such stored files of the student's entire dialogue
with the computer, generated as he works, are called "dribble
files". These files contain all the student's typed inputs, not
just the programs and data that he himself chooses to store.

Each typed input is given a "time stamp'" -- i.e., we record
with the input line the total elapsed time from the entry of the
previous line to the entry of the current line. Thus, we can do
latency analyses as well as other processing involving considera-
tions of time. We have extended the LOGO language processor to
enable creation of dribble files as a by-product of student work.
In these dribble files, we store the student's type-ins but not

the associated computer responses. (The responses can easily be
regenerated later.)

In the next pages, we shall discuss the content and the uses
of such dribble file information. Dribble files of student
programminug generated in introductory mathematics course work
at the University of Massachusetts will serve to illustrate the
discussion. The following example shows the listing of a fragment
of a dribble file made from the work of RC, one of the students.
The file is identified on the top line: RC.DRB;2 along with the
date and time it was generated. We have prefixed the lines with
reference numbers P through 17. Each line starts off with the
time stamp. Thus, in line P the number P:¢@:19 means P hours

P minutes and 1P seconds of time required to complete this line.

The material concerns the development of a procedure for
drawing triangles. Lines P and 1 direct the definitions of the

1-9

Report No., 2625 Bolt Beranek and Newman Inc.

procedures NUM and TRIANGLE to be listed. The resulting printouts
are shown on the right. The TRIANGLE procedure is edited several
times during this session: in lines 2, 3, and 4; later in lines
6, 7, 8, and 9; and once again in lines 12, 13, and 14. 1In
between these successive editing modifications. the éffect of the
changes made in TRIANGLE is tested by executing the procedure NUM
with the input 8. This is done in line 5, then in line 11, and
finally in line 15. The computer printouts from the executions -
the various drawings - are shown on the right. At the end of
this exchange (line 16), the final version of TRIANGLE (which
still has a '"bug" in its stopping rule) is listed. In line 17
NUM and TRIANGLE are stored in their current forms in a file
labeled "JOHN CAD".

DRIBBLE FILE LINE EFFECT AS EXECUTED

RC.DRB;2 THU 29-APR-71 12;4pPM

P P:PP:1p LIST NUM TO NUM :N:
19 MAKE "NU" 1
2P TRIANGLE :N:
END

1 §:pp:11 LIST TRIANGLE TO TRIANGLE :N:
1§ MARK "X' :NU:
2P PRINT :EMPTY:
39 TEST IS :NU: :N:
49 IFTRUE STOP
5@ MAKE "NU" SUM OF :NU: AND 1
69 TRIANGLE :N:

END
2 Pp:PpP:19 EDIT TRIANGLE
3 p:pP:43 1p MIDDLE 5P "X" :NU:
4 p:9p9:95 END
S 9:99:99 NUM 8 X
XX
XXX
XXXX
XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
O

ERIC . 1-10

Report No. 2625 Bolt Beranek and Newman Inc.

6 9:91:95 EDIT TRIANGLE
7 9:90:26 5¢ MAKE "NU" SUM :NU: 2
8 P:¢0:25 39 TEST IS SUM :NU: :N:
9 P:9Pp:93 END
19 g:Pp9:99 NUMS\S NUM8 NEEDS A MEANING
11 p:g@:97 NUM 8 X
SOMETHING MISSING. IS NEEDS .
ANOTHER INPUT. I WAS AT LINE 3¢
IN TRIANGLE
12 §:92:49 EDIT TRIANGLE
13 §:p9:17 39 TEST IS SUM :NU: 2 :N:
14 p:PP:92 END
15 p:pP:96 NUM 8 X
XXX
XXXXX
XXXXXXX
XXXXXXXXX
XXXXXXXXXXX
WHEN YOU STOPPED ME I WAS AT
LINE 5¢ IN TRIANGLE
16 #:00:38 LIST TRIANGLE TO TRIANGLE :N:

1p MIDDLE 58 "X'" :NU:

29 PRINT :EMPTY:

39 TEST IS SUM :NU: 2 :N:
49 IFTRUE STOP

5¢ MAXE "NU" SuUM :NU: 2
69 TRIANGLE :N:

END

17 Pp:91:99 SAVE JOHN CAD

We could have illustrated the use of dribble files with more
complex and technical examples such as from a sequence on formal
differentiation in calculus. Instead, we have chosen to work
with material derived from actual classroom teaching. As is
evident from the above examples, the underlying issues of program
form and organizat;}n arise even with relatively simple under-
graduate material. Moreover, they do not essentially depend upon
the programming language used.

1-11

Report No. 2625 Bolt Beranek and Newman Inc.

If another programming languagé suéﬁ‘as BASIC héd Seen used
instead of LOGO, the same organizational concepts would have
appeared, though in somewhat different form. - To illustrate, we
include a triangle-drawing program written in BASIC. Though this
program superficially appears quite different from the correspond-
ing set of LOGO procedures, the two forms are very close. The
process again falls into three parts -- the main part draws the
triangle iteratively, one line at a time; this part calls a sub-
routine which, like MIDDLE, draws a centered line; and this sub-
routine itself twice calls another subroutine which, like MARK,
types a row of characters. Within each part, of course, there are
formal differences from the corresponding LOGO procedures.
Iteration is performed here using FOR statements rather than by
simple recursion, and all variable names have to be treated as
global. The use of the program is shown following the program
listing.

(Corresponds to TRIANGLE
using character A$ and having
L rows)

19 INPUT A$

2¢ INPUT L

38 FOR K=1 TO 2*L+1 STEP 2

49 GOSUB 9999

SP NEXT X

6p GO TO 9999

(Corresponds to MIDDLE,

_ centers K markings of A$)

9pgp LET C$="r "

9p1p LET N=25-K/2 Marks 25-K/2 blank spaces

9¢2¢ GOSUB 9194

938 LET C$=A$

9¢49 LET N=K Marks A$, K times
9psg GOSUB 91PP
9969 PRINT (Goes to the next line)

9@7¢ RETURN

1-12

Report No. 2625 Bolt Beranek and Newman Inc.

(Corresponds to MARK, types

C$, N times)
91@4p FOR J=1 TO N

9119 PRINT C$;
912p NEXT J
9138 RETURN

9999 END
READY
RUNNH
?*
'3
*
L X X]
kkk k%

‘*******
kkkkkhkkk
khkkkkkkkkkk
I EEEERSEEERRS]
I EREREEERERERES]

4, Building a Language and Monitor System for
Processing Dribble Files

The "dribble file'" we have described contains all details of
the student-computer interaction as it occurs at the teletype-
writer. By replaying a dribble file, e can even get all the
information at the systems level. Thus, the dribble file certain-
ly contains all the raw data available for analysis. The very
completeness and bulk of the information in the dribble file,
however, discourage us from doing any searching and processing
directly. We could have collected the data selectively tc reduce
the size of the file but preselection of the data to be preserved
can turn out badly. Furthermore, any preselection rules can be
applied to the dribble file itself which can then be saved as a
backup. With this strategy, if it turns out in light of

1-13

Report No. 2625 Bolt Beranek and Newman Inc.

consequent results that a poor choice has been made, a new
"preselection" can be done on the dribble file. This is our
rationale for saving all the data.

Since it is inefficient to use dribble files directly, we
must ask what aids exist or can be devised to make their use
manageable. The most rudimentary such aid is a text-editing
language, such as TECO, as implemented on the PDP-10 computer
system. Direct character-by-character matching is made very easy
by such a language. Thus, for example, one could delete all time
marks in a given file or all directly executed input lines. One
could also delete all lines followed by an error message, if one
can specify the format of an error diagnostic statement. These
actions are all the results of simple format matching. Also, it
is easy for a user to insert comments into a dribble file using
TECO. If, in addition, one can combine series of the basic
searching, inserting, deleting, and pointer-moving commands, with
numeric and brahching capabilities, there is the possibility of
extremely sophisticated types of processing. In fact, the
"Q-registers'" that TECO provides for storing stacks make the
language perfectly general and permit Turing-machine-like
programs to be written for all computable functions., One could,
for example, with some effort write a program using TECO to find

and enumerate all simple recursive programs in a dribble file.

Unfortunately, in a practical sense this is about as far as
one can go with TECO. First, one is writing programs in what is
essentially machine-language, a rather tedious undertaking. Also,
it is difficult to write programs that are easily extensible.

Thus, two requirements that a dribble file analysis language

nust satisfy are already apparent. The language itself must be

1-14

Report No. 2625 Bolt Beranek and Newman Inc.

natural in form to accommodate the unsophisticated user, and
user-written procedures must be transparent to permit their use
in further procedures. It is clear that such a language should
sppropriately incorporate the text-handling and editing features
which are already in common use. By making the language self-
extensible, so that sets of programs of any depth can easily be
written, we satisfy the requirement of transparency. Also, it is
much easier to write general programs in a self-extensible
language. For example, instead of writing a TECO program which
looks in the dribble file for an object of some given form, one
can, with about the same effort, write a program in such a
language, one of whose inputs specifies the form to be found.
Also, a SNOBOL-like set of matching procedures could be written
in the file analysis language itself instead of being given as
part of the set of primitives.

Let us discuss the use of the analysis language next., Often
a teacher wishes to classify the programs written by his student
in a way he specifies. It would clearly be very inefficient to
have to perform this analysis on the same programg each time he
looked at the dribble files. The standard result of an analysis
of a dribble file should therefore be a new file containing the
processed data, with tags joining it to the original file at
points of correspondence. This means that the user can look
through the processed file using his own set of descriptors and
" can go back to the raw data whenever necessary.

The idea of being able to operate upon the file at multiple
levels of -detail is of very general use. In analyzing the work
of a student through his dribble files, there are several levels
which may be of nearly sinultaneous interest. For the top level,

a good mode of presentation might be a flow chart, dynamically

1-15

Report No. 2625 Bolt Beranek and Newman Inc.

changing as the user scans the student's work, indicating all the
programs in the student's workspace and showing the changing
connections between them. At a lower level one might have a
complete specification of all the student's programs at that
moment in time. At the lowest level, one would probably want a
"cleaned up" version of the dribble file with (what the user
considers) the obscuring features deleted. The analysis of the
dribble file would begin at the top level. When programs of
particular interest appeared, they might be listed or execcuted.
Still further, the details of their creation and use by the
student might be explored at the lowest level.

Thus, we see the need for a set of programs enabling the
user to switch back and forth between levels, zooming in when he
needs more information, allowing him to vary his scanning rates,
to go back and forth between current and previous material, to
switch from scanning to execution mode, and so on. Let us

consider next some kinds of information that will be of interest.

Apart from considerations specific to the content being
studied, the user probably will be interested in general questions
regarding the formal structure and organization of the student's
work. Examples are: (1) What kinds of programs were used, i.e.,
what standard functions did the programs have (such as initiali-
zation, testing, and computation)? (2) What elementary program
forms were used (loop-free sequence, iteration, simple recursion,
etc.)? (3) What was the program organization, i.e., how were
the various programs combined (program tree, substructure type,
recursioh diagram)? Thus, we can characterizé the functional,
formal, and organizational features of the work or particular
students.

1-16

Report No. 2625 Bolt Boranek and Newman Inc.

For example, it is useful to follow the evolution and mastery
of a given program form in the work of an individual student.
One student, RC, early in the term was confronted by the need for
a procedure to find the integral half of a number. Her algorithm
consisted of successively adding 1 to a trial "half" and testing
to see whether its double was within 1 of the original number.
Having, after considerable effort, written the recursive procedure
FIND to do this, she then saw the need for another program to do
the initialization and wrote HALF. Annotated listing of both
programs are given following. They fall neatly into distinct
parts as labeled. The algorithm itself i§, perhaps, not one that
a more sophisticated programmer would use. Also, in many places
RC is more obscure than is necessary. Real student programs are
like this, however.

TO HALF :N: (:N: is the number
' to be halved)
Initialize 19 MAXE "TRIAL" ¢ (Set the "trial"
value of half to #)
Call Simply- 29 OUTPUT FIND OF :N: (Output the result
Recursive ‘ of FIND as the
Procedure . answer)
END
TO FIND :N:
End-Test 19 TEST GREATERP OF 2 (Is 2*:TRIAL:
AND DIFFERENCE OF within 1 of :N:)
: (:N:) (PRODUCT 2 :TRIAL:)
29 IFTRUE OUTPUT :TRIAL: (If so, :TRIAL: is
the answer
Increment 3¢ MAKE "TRIAL" (Otherwise, add 1
- (SUM OF :TRIAL: AND 1) to :TRIAL:)
Recursion 48 OUTPUT FIND OF :N: (and repeat FIND)
‘ END

Report No. 2625

Bolt Be¢ranek and Newman Inc.

About a week later the same student wrote a pair of programs

to automatically draw triangles,.

We showed the dribble file for
the last part of this development in Section 3.

The form of

these programs is nearly identical to the ones for halving. The
only change is that each step of the recursive procedure TRIANGLE

results in an action and this was not true for FIND.

This task,

however, only took about half the time required for the earlier
one. Along with this, the problem was approached much more
directly, as is evident from looking at the dribble file.

Initialize

Call Simply-

Recursive
Procedure

Action
End-Test
Increment

Recursion

TO NUM :N:

14 MAKE "Nu" 1

2p TRIANGLE :N:

END

TO TRIANGLE :N:
19 MIDDLE 58 "X" :NU:

29 PRINT :EMPTY:
3@ TEST IS (SUM OF
:NU: 2) (:N:)

4¢ IFTRUE STOP
SP MAKE "Nu"
(SUM OF :NU: 2)

6¢ TRIANGLE :N:
END

‘Clearly, this brogram form was being internalized.

(:N: is the number
of X's in the bottom
row of the triangle)
(Make the number of
X's in the current
row 1)

(Draw the triangle)

(Mark the current
TOW)

(Start the next row)
(Is this the last

- row?)

(If so, done)
(Otherwise, get
number of marks in
current row)

(and repeat
TRIANGLE)

This example forms a small part of RC's work on the geometric

figure drawing sequence.

1-18

In all, she used three different program

Report No. 2625 Bolt Beranck and Newman Inc.

forms: the one which we have just discussed which we will call
form II; simple recursion which we label form I; and form §# which
is a linear sequence of steps. The diagram in Figure 1 shows all
the connections betwecen the various parts of the drawing sequence.,
The program forms are indicated in parentheses after each
procedure name. (A more complete "flow chart" would show the
conditions for recursion and termination of each procedure of
form I or II. This information has been omitted, however, for

the sake of clarity and conciseness.)

Another student was working on programs for drawing geometric
figures during the same period. The diagram associated with the
work of this student, AF, is shown in Figure 2., Great differences
in program organization in the two cases are apparent, even though
the set of programs have the same final effect.

These examples show some of the issues involved in analyzing
complex student interactions. These students spent about three
weeks near the beginning of the term writing these programs.

Thus it is apparent that complex structures can be generated
quickly, even by "beginners". We need to consider next how such
structures arc retrieved from dribble files.

l{llC 1-19

Report No. 20625 Bolt Beranek and Newman Inc.

ernp (C1DD
MA$K D)
HALF SUSERMARK (@) _
\\\\\\\3§ RECTANGLE (1)
_ (rectangle start-
YA ing at left margin)

RECTxNG.E (1)
(rectangle

’ (rectangular
\ strips)
' / \ >

C1id centered on
TRIANGLE page)
upp (1)
("upside-down"
triangle) NUM

_/

DIAMOND (9D

/

GLIRP (1)
(The student's name for a
series of diamonds and
rectangles)

Figure 1. Diagram of RC's Drawing Program

Report No. 2625 Bolt Beranck and Newman lInc,

MARK (1)

v
/////,///SUPERMARK q"D

RECTANGLE (1) V
(rectangle with MIDDLE (©)
specified start- N‘“‘*‘*\--§>
ing margin) TRIANGLE (1)
vV v
SIM-~RECTANGLE (@) CONE (1)
(centered ("upside-down"
rectangle) triangle)
\ yZ

DIAMOND (@)

(This really draws
\L & hexagon)

SIMPLE-DIAMOND (9)
(This one draws a
diamond)

SAW (1D
(series of
diamonds)

\
SUPERSAW (@)

(rixed series of diamonds
and rectangles)

Figure 2. Diagram of AF's Drawing Programs

Report No, 2625 Bolt Beranek and Newman Inc.

S, The Raw Dribble File

In this section we begin a detailed discussion of the
processing of dribble files by first describing their structure.
A dribble file is simply the very slightly altered input stream
produced in the course of a single LOGO session. This input
stream is generated both by teletype inputs as well as retrievals.
of previously SAVEd LOGO files. When a version.of LOGO containing
the dribble file generator is entered, the user is asked for
identification -- INITIALS PLEASE. Entering the initials NMI
aborts the dribble file generation process. Any other input is
acceptable and is used as the name of the dribble file which is
subsequently generated. (In our initial use of dribble files in
teaching in spring, 1971, each student followed his initials with
a digit to enable more than one file to be created under his
initials on any given day. To avoid the overwriting and clobber-

ing of previous files of the same student, automatic numbering
was later implemented.)

A sample segment of a dribble file is given in Table 1.
This file was created during a student working session. Associ-
ated with the file is a header which give§ the date and time the
file was created as well as the identifier entered by the student.
The input stream following has been augmented by time marks at
the beginning of each line; these give the elapsed time since
initiation of the previous line. These time marks and the
heading are the only modifications provided to the raw input.

Two aspeéts of dribble files can easily be noted by

inspection of Table 1. First, the special time mark 24:p@:9¢
precedes lines which were retrieved from storage, as opposed to

1-22

Report

24: 00100
24:GH 09
241 00: 00
21: 0000
242 Q000
24:00:00
24:00:00
24:00: 00
24: 30260
24: 0000
24:060:00
24:069:00
24: 06200
24:060:00
RA:003:09
24:00: 00
246000
24: 80190
24:00:99
24300800
24: 0008
24:00:69
24:00: 04
24:00: 008
24:00:00
2480900
24:100: 00
24: 00180
24:00:0%
241000100
24:06: 060
24t 00 000
24:00:00
24:09:00
D: 0210
Q10047
P:01:13
B:09:18
0:00B:33
G: 00007
2:00:15
B:0n: 25
B:0O1:3G
pipysen
100225
2:0: 1D
UHU LR
B:op57
G:03:20
P1nos25

No. 2625 Bolt Beranck and Newman Inc.

TO FIND $N:

30 TEST GHEATERP 2" DIFFERENCE DIFFERENCE :Ns tTRIAL: :TRIAL:

40 IFTRUE OUTPUT $TRIAL:

SG MAKE "TRIAL™ SUM :TRIAL: '"t"
60 OUTPUT FIND Nt

END

TO HALF N

1D MAKE "TRIAL' "p"
20 OUTPUT FIND s
END

TO DELETE :CHAR: N3
160 TEST IS DIFFERENCE :N:g 1" t'g*
20 1FTRUE OUTPUT BUTFIRST :CHARK:

END

TO STRIPE s$M: $N: Y
] SUBRECTANGLE st
20 SUBRECTANGLE s3ti:
30 TEST IS SUM Y
489 TFTRUE STOP

50 STRIPE tir tNs SUM :1Y: "1™ 8¢
END

TO MIDDLE ¢N: X2

30 OUTPUT DELETE BUTFIKST :CHAR: DIFFERENCE :N: "lh

All of the lines with
24:99:99 time marks wervre
retrieved sequentially
from a LOGO file previous-
ly saved by the student.
Their effect is to load
the LOGO procedures FIND,
HALF, DELETE, STRIPE, and
MIDDLE into the workspace.

10 MARK "#' DIFFERENCE HALF :N: HALF COUNT :X:¢

20 TYPE X3
END

MAKEtT 1T

TO TRIANGLE :N:
TRIANGLE 3

EDUT TRIANGLE

16 MARK "X 1

4% MARK “'X" SUM "X |
END

TRIANGLE 3

LIST YRIANGLE
EDIT TRIANGLE

25 T IS SUM 1 1 3
Ay MALK “X' SUM 1
ND

TRIANGLE 3

LI1ST TKIANGLE
LIST SUBEET0:6A:16 L1ST SUBRECTANGLE
LIST SUPERARK

N
1

The remaining lines are student inputs
to LOGO. The student is clearly
involved in running, debugging, and
editing a LOGO procedure, TRIANGLE.

TABLE 1. A "Raw'" Dribble File Segment

1-23

Report No. 2625 Bolt Beranek and Newnman Inc,

those lines directly typed in., (Distinguishing between lines
which were typed in from those which were retrieved is useful to
the dribble file analyzer. More about this ‘later on.)

The other thing that should be noted is the appearance of
occasional time marks in the middle of lines., This occurs when
an input line has been terminated with a RUBOUT, rather than an
EOL character, meaning that the user has aborted the input of
that line. The next line of input is then continued on the same
line since no EOL*appears in the dribble file.

A student session usually commences with a GET command, with
which the student retrieves his work at thc point he left off.
The partial example, given as Table 1, represents about one fourth
the length of a typical session involving beginning users. As the
student progresses, his dribble files reach lengths of 10 pages or
more for a 90 minute session. Our choice of recording only the
input stream (instead of both input and output) arose largely
from the great amounts of data generated in such sessions. We
retain the minimum amount of information required t« completely
reconstruct the student work at any point. Inclusion of the out-
put stream would make the dribble file more readable, but would
not be at all useful in such reconstruction. Such inclusion
would much more than double the amount of information recorded,
would lead to minor technical problems in mixing streams, and

would require more CPU time in its generation.

*
The end-of-line character.

1-24

Report No. 2625 Bolt Boranek and Newman Inc,

6. Preprocessing of the Raw Dribble File

The raw dribble file contains a good deal of information
which is of marginal interest for most analysis and which there-
fore can be eliminated. Character-by-character editing in the
student's work, for example, is of no general interest other than
in statistical studies--the student has instantly corrected his
typing errors without requiring feedback. Also, the raw dribble
file has to be massaged to put it into a pattern transformable
to LOGO data types. Preprocessing encompasses these two activities.
It is implemented in the TECO text editing language, the actual
prograns being given in Part 2.

Cleaning up of the files involves chiefly elimination of
explicit line editing and spurious characters such as illegal
control characters. Also, the various nonspace separators are
spaced out for easy'decomposition later on. Empty dribble file-
lines are removed. Multiple spaces are eliminated automatically
later on, so these are ignored.

In order to be useable within LOGO, the successive lines of
the dribble file are assigned as values of variables created by
the preprocessing. At this level we must generate the actual
assignment statements for subsequent execution. The statements
have the form

MAKE 4T var name 4T 4T var value 4T,
where +T delimits both the variable name and the variable value.
\These control T's are converted to quotes in subsequent process-
ing.) When these assignment statements are rcad into a LOGO
workspace with a GET command, they are executed and the bindings
actually made. The variable names are created in the form

"(n) N" where (n) runs sequentially from 1 by an increment of 1,

1-25

Report No. 2625 Bolt Beranek and Newman Inc.

providing an ordering for the dribble file lines, and N is a
literal denoting name. The value of each such variable is the
actual content of the associated dribble file line. 1If the line
is one retrieved from a pre-cxisting LOGO file (with time mark
24:p9p:9p), an additional assignment statement is generated of the
forn,

MAKE 4T (n) A 4T AT STORED 4T.

Use of this set of auxiliary variables will be discussed in the
next section,

To use the preprocessing program, the user enters TECO and
types ;Y LOADER.TECY HXAY) MAQ . .This sequence of steps loads the
loading macro and initiates its execution. The program asks the
user for the name of the input file -- the one to be preprocessed
and the name of the output file, in which the result is to be
stored. Since, for our purposes, no useful information is
destroyed during preprocessing, as a general practice we overwrite
the output onto the input file. 1In Table 2 we give the preprocessed
form of a roughly corresponding segment of the raw dribble
material shown in Table 1, The first line of Table 2 is the

beginning of the stored précedure DELETE. The last lines of the
two tables correspond.

1-26

Report No. 2625 Bolt Beranek and Newman Inc,

MAKE ¢TU3 AT *TSTORED*T

MAKE *T43 Me7 170 DELETE § CHAR § ¢ N 7

HAKE ¢TUU AT *TSTORED*T

MAKE *TUU Ne*T *¢T10 TEST IS DIFFERENCE § N § " 1 % % 5 nep

MAKE *T4U5 A®T *TSTORED®T '

MAKE *T45 Ne¢T 720 IFTRUE OUTPUT BUTFIRST ¢ CHAR 37

HAKE *T46 A¢T *TSTORED*?T

MAKE *T46 NeT *730 OUTPUT DELETE BUTFIRST $ CHAR { DXFFERENCE [N 3 »
tef Hel

HAKE *TUT AT *,STORED*?

MAKE *TU7 HtT *TENDT

HAKE *TU8 AtT *TSTORED*T _

MAKE *Tu4B NeT *770 STRYPE ¢t M ¢ ¢ N ¢ ¢t Y ¢ ¢ 8 117

MAKE *TWU9 AT *TSTOREDT '

HAKE *TU3 N¢T *T9 SUBRECTANGLE t M 3 ¢ 0 § 1 ¥ 37

MAKE *T50 A*T ¢TSTORED*T '

MAKE ¢TS50 NeT 720 SUBRECTANGLE ¢ M t ¢ N ¢ SUM § Y § » q ne7

MAKE *T59 A*T *TSTOREDT

HAKE *T51 He*T *130 TEST IS SUM § Y 3 ® 1 " 1 S 1T

MAKE *T52 AtT *TSTORED*T

MAKE *T52 R*T *140 IFTRUE STOP*T

MAKE *T53 AT *TSTORED+*T

MAKE *T53 N*T *7T52 STRIPE ¢t M § ¢ ¥ § SUM 8 Y ¢ " 1 % ¢t § ge1

HAKE *T54 AtT *TSTOREDT , ,

MAKE *T54 N*T ftTEND*T

HAKE ¢T55 AtT tTSTOREDT

HAKE ¢T55 H*T *TTO MIDDLE § N t t X 17

MAKE 756 A¢T *TSTORED+*T

MAKE 756 Ne¢T *740 MARK "™ " DIFFERENCE FALF § N 1 HALP COUNT § X §¢T

¥AKE *T57 A*T *t0STOREDT

MAKE *T57 NtT *720 TYPE § X 37

MAKE *tT58 A¢T tTSTORED¢T

HAKE *T758 Ne¢T *TEND®T

MAKE 759 AtT *TSTORED+T

MAKE *T59 H*T *THAKE*T

MAKE *T60 N*T ¢T770 TRIANGLE 1 N je7T

MAKE #T61 HeT *TTRIANGLE 3¢T

MAKE *T62 NtT *TEDIT TRIANGLE®T

MAKE *T163 N¢T *T180 MARK " % % 17

HAKE *T6U N®T *TUQ MARK " X " SUH ™ X ™ 1T

HAKEZ *T65 N¢T *TENDtT

HAKEZ tTgs N*T *TTRIANGLE 3¢T

KAKE ¢T67 N¢T *TLIST TRIANGLE®T

KAKE ¢768 Ne¢T *TEDIT TRIANGLE®?T

HAKE tT69 Ne¢T *T20 T IS SUM 41 1 ¢ N 17

HAKE *¢T73 N*T *TU2 MARK " X " SUM 1 {¢T

BAKE 771 eT ¢TENDeT

MAKE ¢T72 N¢T ¢TTRIANGLE 37T

HAKE *T73 Ne¢T *TLIST TRIANGLE®T

HAKE *T74 NeT *TLIST SUBRECTANGLEST

MAKE 775 K*T *TLIST SUPERMARKST

TABLE 2. A Segment of a "Preprocessed”" Dribble File

1-27

Report No. 2625 Bolt Beraneck and Newman Inc.

7. Parsing of the Dribble File

In the previous section we have discussed preprocessing cf
"raw'" dribble files. To initiate the processing phase, the pre-
processed file must now be copied into LOGO-compatible form by
use of the LOGO command COPY, which has the general form:

COPY (quoted system file name) Epggmg (unquoted LOGO filename,

entrynane)

For example, if the preprocessed file was given the name
GLICK.LESSONI1

COPY "GLICK.LESSONI" TO GLICK LESSONI1

creates a LOGO file with roughly the same name as the preprocessed
text file. If we now use the LOGO instruction LIST ENTRY GLICK
LESSON1, we get almost exactly the same printout as from the

- (TENEX) system instruction LIST GLICK.LESSON1l; the only difference
being wnat the control-T's have become quotes. The important
difference is that "invisible'" heading information has been added
so that the LOGO instruction GET GLICK LESSONl results in the

MAKE statements being executed and the appropriate bindings
entered in the workspace ready for manipulation.

Following a COPY and a GET of the form described in the
preceding section, the analyst has all the lines of the dribble
file in his LOGO workspace. Each line could now be executed using
the LOGO DO command, and a simple iterative procedure suffices to
execute the dribble file lines to any desired point. Such a
direct attack has both unfortunate as well as inconvenient
conseéuences. First, one is not executing the statements of the
dribble file in precisely the same environment in which they

were first produced. In particular, a GET statement might not

GET the entry fetched by the original execution of that command

Report No. 2625 Bolt Beranek and Newman Inc.

and a SAVE might be disastrous, possibly clobbering a subsequently
produced entry, replacing it with an outdated version. It is
precisely for this reason that the input stream resulting from a
GET has been incorporated into the dribble file. Both the GEf

and SAVE commands, therefore, should be no-ops, i.e., have no
effect. Similarly, execution of GOODBYE might well be inconvenient,

Also there is little point in executing lines with simple parsing
errors,

A second difficulty in direct use of a dribble file lies in
the generation of the information required for the graphical
representation of procedure structure. Each procedure line has
to be broken into elements and each element looked at to determine
procedure interconncctions. And, this process has to be repeated
each time a structure is elicited further along in the file.

Also, in a simple direct mode of dribble file access, many invest-
igations such as following the evolution of a procedure definition

would unnecessarily require execution of the entire dribble file
segment.

These difficulties are easily resolved by the generation of
auxiliary information for use in conjunction with the dribble
file itself. Such information includes various data which
expedite the execution of the dribble file such as data pointing

~out. the non-utility of dribble file lines and, where appropriate,
data to speed up graphical displays of procedure interconnections,
The other useful type of information is concerned with answering
analytic questions which really shouldn't require execution of
the file. For example, a catalog of correctly parsed procedure
lines enables the system to give the definition of any procedure
at any point in the dribble file by a simple lookup procedure.

(This cannot be done by simply looking for the definition lines

1-29

Report No. 2625 ' Bolt Beranek and Newman Inc,

directly because the "state!" of the workspace must also be known,)
Furthermore, as the user, through experience, evolves definite
patterns of wunalysis of student dribble files, he can incorporate
more and more of this analysis into procedures which gencrate
desired information before the dribble file is scanned.

We call this phase the parsing phase, although parsing is
not the only activity performed at this time. The purpose of the
parsing phase is to make the execution and scanning of the dribble
file efficient and simple at a reasonable cost in time. The
general idea is to provide the analyst, and the analysis systenm,
quick»access to information which is likely to be required
repeatedly in going through a dribble file while carrying out
investigations. ‘

The procedures making up our parser are given in Part 2. Ve
give here only a summary of the parser's effects and structures.
Each line is parsed and inspected element-by-clement with the
fol’owing effects: Some lines are not to be executed automatic-
ally, notably those with errors that might be fatél. “or the
line numbered "(number) N'" an associated variable of the form
"(number) D" is given data which label the line as having
deleterious effects during execution (the user will usually wish
to inhibit their execution during his analysis). Examples of
such data are indicators for the commands GET, SAVE, and GOODBYE,
as we just noted. Also included in this class are lines with
simple parsing errors--such errors are not exccuted by LOGO and
have no effect on the workspace. Also, in the absence of error-
trapping capabilities, parsing of such lines always pops the
user back to the top level of LOGO, inhibiting execution of
whatever analysis program is being used.

1-30

Report No. 2625 _ Bolt Beranek and Newman Inc.

Such annoyances can be avoided by skipping over badly formed
lines.‘ These errors, although chiefly parsing errors, can have a
semantic flavor, however, because LOGO is in one of two states at
any point - defining or not defining. The state is completely
determined by finding which procedures have already been defined.
Thus, we can get values for " (number) D" like '"NOT DEFINING", and
"FOO ALREADY DEFINED" in addition to local parsing error indicators
such as "MISSING QUOTE". The gencral strategy is to suppress
execution of all such lines, i.e., to skip over line "(number) N"
if "(number) D" is not empty, although, as we see later, the
decision to skip or execute can be conditional on the content of
"{number) DY, ' .

As the parser goes through procedure definitions, a list of
defined procedures is built up under the name "FINAL CONTENTS".
The value of this variable is considered a list of triples, the
first element of each being the procedure name, the second the
dribble file line on which the procedure has been defined, and

. the third the number of inputs the procedure must take. This is
the top level of the catalog mentioned above. At the next level
down, for each procedure F0O, there is a variable "STRUC FOO"
taken to contain a set of pairs. The first element of the pair
is a dribble file line number, the second is the line of FOO
which has been defined on that dribble file line. Thus, the
evolution of any known procedure can be traced, using just
"STRUC {(pname)'" and simple lookups, and a list of the procedures
defined at any point can be easily determined using "FINAL
CONTENTS". (At any point in time, we have, of course, not a
true temporal referent, but the last line of the dribble file

which has been, or is considered to have becen, executed.)
The parsing package, as described, gives all information

necessary to run through the dribble file and this routine

1-31

Report No. 2625 ' Bolt Beranck and Newman Inc.

operation is described in the next section. The user is also
able to specify additional work to be donec during parsing. In
fact, as he gains experience with the system and his inquiries
become more and more systemaiic, incorporation of his individual
facilities might substantially modify the original parsing
package and lead to the development of a customized semiautomatic
system., To make such additions to the parsing procedures easily
available to the user, we have included four special entry points

in the form of the empty procedures $EXAMINELINE, $USEUPLINE,
$EXAMINEEL, -$USEUPEL,

$EXAMINELINE and $USEUPLINE are invoked as each succeeding
line is first looked at. The difference between them is that
$EXAMINELINE is to be a command which has no effect on subsequent
parsing of the line; whereas $USEUPLINE must be a predicate,
returning TRUE or FALSE in addition to any action it may perform.
If $USEUPLINE returns TRUE, parsing of the line is inhibited and
the next line is accessed.

Similarly, $EXAMINGEL is a command which is invoked as each
element of the line is examined. $USEUPEL (like $USEUPLINE) is a
preaicate and it returns TRUE or FALSE corresponding to skipping
to the next element or continuing. A fifth procedure $ENDLINE is
invoked after the line is parsed to permit "cleaning up" of the
work the user-defined procedures may have done.

Each of these empty procedures is "filled in'" in the usual
way, by defining a LOGO procedure with that name. If these empty
procedures are not '"filled in'", parsing is carried out in the
standard manner. These procedures, if wished, can be used to
modify as well as examine the line being worked on--the name

"CURRENT LINE" is given to the current line and its remaining

1-32

Report No. 2625 , Bolt Beranek and Newman Inc.

portions as it is processed. Its number is :LINE NO:. Any of
the five procedures may be defined to modify any of the global
variables described earlier or, for that matter, to define new
ones. In Part 3 we give two examples of defimition of such
procedures. One example deals with parenthesis-checking, the
other with checking for command or operation.

An annotated listing of the parsing system is given in
Part 2. A brief description of these procedures follows here,
howeVer, as an aid to the user who wishes to extend them. The
top-level procedure is $PARSE which performs the necessary
initialization, elicits a dribble file name, fetches it, and
calls $GOTHROUGH to step through the lines of the dribble file.
$STARTLINE then begins the actual parsing by passing the line to
one of several procedures, depending on the type of line. Direct
lines are immediately scanned, element-by-eclement, by $DOLINE;
procedure definition lines pass first through $STOREDP. The
other possible branches are the self-explanatory $PARSETO (for
parsing procedure title lines), $PARSEEDIT, $PARSEEND,
$PARSEERASE, $PLERASE (for line erasure, ERL), $PLEDIT (for line
editing, EDL). These, in turn, call procedures which handle
various levels of detail. $EXAMINELINE, $USEUPLINE, and $ENDLINE
are, as might be surmised, contained in $STARTLINE and the pro-
cedures $EXAMINEEL and $USEUPEL in $DOLINE. Utility procedures
include $GOODPARSEP :N: which checks emptiness of :(N) D:, i.e.,
whether the line passed muster or might need to be inhibited
during execution, $ADDERROR which adds to :{(N) D:, and $ADD
tPLACE: :MES: which adds :MES: to the contents of :PLACE:.

Table 3 is a summary of the variables used in parsing.

In generating the structure clements :(N) C: used for graph-
ing student procedure structures, it is necessary to check

1-33

Report No.

8 .

dribble file.
and "(n) A" values.

2625

. Bolt Beranek and Newmun Incg.

An Example of the Output of Parsing

In the following pages we show the results of $PARSE on a
The input is preserved--it is simply the “(n) N"

The stiucture variables cover the entire

dribble file, though we show only part of the file in the example--
we leave out some of the middle, as indicated. (It has been left

unchanged by parsing.)
preted by LOGO as quotes.

Again the control T's (4T's) are inter-
Table 3 summarizes the meanings of all

variables used in the example shown in Table 4. Following the

first three assignment lines,

the middle portion repeats the out-

put of the preprocessor (lines 1 N through 99 N; we show only
the beginning and ending lines). The last part of the listing

shows the final form of the parsed lines. We show all lines

through 75 C,

LIAKE
MAKE
HAKE

HAKE
KAKE
HAKE
MAKE
HAKE
HAKE
HAKE
HAKE
MAKE
MAKE
MAKE

tTCURRENT LIMNET ¢T¢7T
tTCURRENT PROCtT ¢TTRIANGLEeT
tTEINAL CONTENTS*T QTTRIANGLB 4 1 MARK 9 2 SUPERMARK 45 4 RECTANG

*t71
tT2
*+7T3
* Ty
t7T5

t76

tT7
*T8
tT9
'T9

NeT
NeT
NeT
NeT
NeT
NeT
NtT
NeT
AtT
NeT

which corresponds to the last line of Tables 1 and 2.

o¢LE 19 5 SUBRECTANGLE 26 3 FIND 33
#¢ 4 HALF 39 ¢ DELETE W3 2 STRIPE 4
o« 4 MIDDLE 55 2 NUM 87 1 TRIANGLE
oy 980 1 TRIANGLE 176 17

*TTO TRIANGLE ¢ N g7

*T12 MARK " X "¢T

¢T25 T IS suM " X #® 1 ¢ N 17

tT35 IFT STOP+T

tTuU) MARK SUM " X ¥ J7

tTENDeT

tTTRIANGLE 3*7
*TGET JOHN CADT
tTSTOREDYT :
*tTTO MARK ! CHAR ¢

tT14 AT *TSTORED*T

§ N 37

Report No,

2625 Bolt Beranek and Newman Inc.

HAKE ¢780 N¢T tT15 TYPR*T

HAKE *T81 N*T ¢TEDIT TRIANGLEST
HAKE *¢T82 N¢T *T15 TYPE " “eT
HAKE *T83 Ne¢T *T45 PRINT " "eT
HAKE ¢T84 Ne¢T tTENpeT

HAKE ¢TES N¢T *TERASE TRITANGLE*T
HAKE *T86 N*tT *7T0 : N $¢4

KAKE ¢T87 N¢T *TT0 NUM ¢ ¥ 37
BAKE 788 N*T 746 MAKE ¢ N t 17T
HAKE 189 NeT tTEND®T

RAKE *T9¥ Ne¢T t7TO TRIANGLE § W g7

‘MAKE tTSTRUC

MAKE T2 Ct7
BMAKE ¢T3 C*7
MAKE *TH CoT
MAKE ¢T5 CtT
MAKE tT6 27
" MAKE ¢T7 CtT
HAKE ¢T8 DT
KAKE *TSTRUC
HAKE tT10 C*T
KAKE *T1% CeT
HAKE tT12 C¢T
HAKE *tT43 C*T
HAKE *T14 CeT
MAKE *TSTRUC
KAKE *T16 C*T
KAKE ¢T47 Co7
HAKZ *T48 Co7T
MAKE *TSTRUC
KAKE 1728 C*7T
RAKZ ¢T21 CeT
KAKE ¢T22 €T
KAKE ¢T23 CoT
KAKE *T2U Co7T

TRIANGLEYT ¢71 0 2 3 U 5 63 64 69 7p 8% 82 83 8% ERASE 9¢
¢e O 9| 92 93 94 95 111 123 125 126
se 127 143 14y 168 ERASE 476 8 179
se18U*T
tTTRIANGLE MARK*T
*TTRIANGLET
tTTRIANGLE®T
tTTRIANGLE MARK IfT
tTTRIANGLET
tTTRIANGLET
tTNOTCURRENT*T
MHARK*T *+T9 ¢ 16 11 12 13 160 ERASE'T
tTHARKT
tTHARK?T
tTUARKT
*TMARK MARK!T
*TMARK T
SUPERMARKT *T15 0 46 17 160 ERASE'T
tTSUPERMARK MARKeT
*TSUPERMARK MARK*T
tTSUPERMARK YT
RECTANGLE'T tT19 0 20 21 22 23 24 169 ERASET
tTRECTANGLE SUPERMARK*T
*TRECIANGLET
YTRECTANGLE*T
*TRECTANGLET
*TRECTANGLE RECTANGLE'T

HAKE *T25 C*T *TRECTANGLE?T

HAKE *TSTRUC

SUBRECTANGLET *T2¢ © 27 28 29 38 31 160 ERASET

MAKE ¢T27 C*T *TSUBRECTANGLE SUPERMARK®T

MAKE *+T28 C+T

*TSUBRECTANGLET

HAKE *T29 C*T *TSUBRECTANGLE?T
HAKE *T30 C+T *tTSUBRECTANGLE+*?Y

Report No.

MAKE
HAKE
MAKE
HAKE
MAKE
HAKE
HAKE
HAKE

¢

2625 Bolt Beranek and Newman Inc,

tT31 C*T *TSUBRECTANGLE RECTANGLEeT

tT32

CeT

*TSUBREUCTAMGLEST

tTSTRUC FIND®T ¢T33 @ 34 35 36 37 160 ERASEeT o
'T34 CrT *TEINDIT

tT35

Ct+T

*TFIND*T

tT36 C*¢T *TFIND?T

737
tT38

ceT
CvT

*TFIND FIND'T
“TFIND¢T

MAKE *TSTRUC HALE®T *T39 ¢ 4@ 41 162 ERASET
MAKE tTUO C*T *THALF*T - '
HAKE ¢TU41 CtT tTHALF FINDeT

HAKE tTWL2 C*¢T ?THALF+? .

MAKEZ *TSTRUC DELETE*T +Tu3 @ U4 45 46 160 ERASE!T
MAKE *T44 C*+7 *TDELETEeT

BAKE tTU5 C+T ¢TDELETE!T

MAKE *TU6 C+T *TDELETE DELETE'T

BAXE *Tu7 CtT *TDELETE'T

MAKE *TSTRUC STRIPE*T ¢TuB @ 49 50 51 52 53 160 ETRASE?'T
HAKE *TU9 C+T 'TSTRIPE SUBRECTANGLET ’
MAKE ¢T50 C+T *TSTRIPE SUBRECTANGLE*T

MAKE ¢T51 C¢T *TSTRIPEe?T

HAKE *T52 C*T tTSTRIPET

MAKE *T53 C*T *TSTRIPE STRIPE'T

BAKE *T54 CeT ¢TSTRIPZ+T

MAKE *TSTRUC MIDDLE+T ¢755 @ 56 57 460 ERASE*T
MAKE *T756 C*T *TMIDDLE MARK HALF HALF*T

BKAKE *T57 C*T *TMIDDLE+?

MAKE tT58 C*T *TMIDDLE+T

HAKE *T60 D*T *TALREADY~DEFINED'?Y

HAKE *T0641 C*T *TTRYANGLE+T

MAKE *T63 CtT tTTRIANGLE MARK*T

BAKE *T6U C*T *TTRIANGLE MARK'T

MAKE *T65 C¢T *TTRIANGLE?T

MAKE *T66 C*T *TTRIANGLE+T

MAKE *¢T67 C*T *TTRIANGLE+T

MAKE 769 C*? *TTRIANGLE*T

BAKE 9770 CtT *TTRIANGLE MARK*T

HAKE *T71 C*T *TTRIANGLEST

MAKE *T72 C*T *TTRIANGLET

MAKE *T73 C*T STTRIANGLE+T

HAKE *T74 C*T *TSUBRECTANGLE!T

MAKE ¢T75 CtT tTSUPERMARK?T

TABLE 4. Listing of a $PARSE Output

1-37

Report No. 2625 Bolt Beranek and Newman Inc,

9. RUNning the Dribble File

1

In this section we describe the RUN system and the RUN phase
of the analysis. Once the parsing of the dribble file, with ‘its
attcudant generation of auxiliary information, is completed, the
file is ready to be studied. We call the analysis subsystem
which is used for this the RUN system.

9.1 The Display Configuration

In its present form the RUN system uses an IMLAC display
terminal for graphic as well as alphanumeric presentations. The
specific graphics commands and their implementation are discussed
in the system documentation (Part 2); here it suffices to mention
that these include both relative and absolute vector drawing
capabilities as well as various alphabetic subroutines, The
graphics capability is chiefly the drawing of procedure structure
diagrams similar to those shown in Figures 1 and 2 above; the
bulk of the information presented is ' in alphanumeric form -- this
includes both the analyst's commands to the system and the
unfolding of the dribble file, i.e., the student commands and
their consequent output.

The alphanumerics are kept separate from the graphics -- the
. top part of the IMLAC screen serves as a scrolled teleprinter,

the lower helf serving for graphics. A sample screen is shown in
Figure 3. (The photocopy was made by a hard-copy device associated
with the IMLAC.) In the situation shown, the dribble file user
typed WHERE to the dribble file system which responded immediately
below; telling him what point has been reached in the analysis.
The user then typed a DISPLAY command (DISPLAY "KEEPTALKING")

which resulted in the procedure structure diagram being displayed

1-38

Report No. 2625 Bolt Beranck and Newman Inc.

tHNEPE
QT DFIBODLE LINE &)

KullH 1§
rEEPTALYiNG 3 2
;g:_g?ocfgyags €008 PALDOMINO0SE GETLOUN GETVEP GETADY GETCONN
MrEdICT g LI TLESE T : iy e - .
Dsrlusol Wr L BETOESENT SIMPLESINT BIOGSENT YaLr vEEPTOLKING MAvE REEN
«OISPLAY “rEEPTALY InG® ‘ .

L d
-

(Note: The procedure names in the boxes,
although quite readable on the screen, do

not reproduce legibly.)

Figure 3. Example of a RUN system Interaction on the IMLAC
Display Terminal.
1-39

O

Report No. 2625 Bolt Beranek and Newman Inc.

underneath. Procedure structure diagrams are discussed below, as
are WHERE, DISPLAY, and the other RUN system commands. '

9.2 The Augmented Dribble File

In RUN phase, the analyst has a considerably augmented dribble
file to work with. 1In addition to a copy of the original file,
he has the auxiliary data summarized in Table 3 above. Generally
speaking, these fall into two classes, the automatically generated
"comments'" '"(n) A" "(n) B" and "(n) D" and the reconstruction aids
of the form "{n) C", "FINAL CONTENTS", "STRUC (pname)". In
addition to providing textual information, these comments may be
considered a descriptor set that can be used as switches by run-
time commands. A standard example of the use of such a switch
is in the conditional execution of the lines of a dribble file,
as when the analyst skips over those obviously defective lines
labeled by a non-empty "n (D)".

Besides the special, temporarily used variables generated
by the graphics package subroutines, there are just two global
variables which are monitored by the RUN system. "DRIBBLE NO",
initially @, gives the line no. up to which the dribble file has
been executed. "CURRENT PROCEDURE'", initially empty, gives the
name of the procedure currently being defined in the course of
execution of the dribble file. (The latter piece of information,
although obviously known to the LOGO language system, is not
otherwise accessible to LOGO programs.)

1-40

Report No. 2625 Bolt Beranck and Newman Inc.

9,3 Execution of Dribble File Lines

To begin use of RUN, the command $STARTRUN asks for a dribble
file name and initializes the system. The anzlyst then has two
¢ssentially distinct modes of interaction. First, and most
straightforward, he can execute the dribble file sequentially in
a variety of different ways, depending upon the kind of information
he wishes to extract. Alternatively, he can interrogate the
dribble file without any execution, possibly in a nonsequential

. . At
manner. And, of course, he can intermix these two modes.

In the first mode of work, the analyst has three kinds of
execution facilities available to him. First, he can simply look
at the lines of the dribble file as they are being executed
together with the computer responses that they generate. He can
exccute the dribble file one line at a time using the command
$DOLINE. This results in the next dribble file line being
printed (with three asterisks on each side to set it off) and
then the execution of the line, if it has parsed correctly,
$DOLINE then stops. He can perform a specified number of lines
with the command $DOTO :LINE NUMBER:. And, he has available a
conditional stop as follows. $DOUNTIL :DESCRIPTOR: executes the
dribble file until the specified :DESCRIPTOR: is found (as the
comment associated with that dribble file line). Finally,
$DOALL executes the entire dribble file line-by-line. $DOALL,
$DOTO, and $DOUNTIL call $DPOLINL repeatedly.

A second source of information is from "looking around,"
after having executed the dribble file up to some point. The
analyst can list the definition of any procedure in the dribble
file which is defined at that point. He can exccute any

procedure (the student's or his own) or, generally Speaking;

1-41

Report No. 2625 Bolt Berancek and Newman Inc,

perform any LOGO commands. There is, of course, the danger that
in certain activities, such as redefining student procedures, the
user will destroy the "state of the world.'" Therefore, we have
provided the self-explanatory commands $SAVEWORLD and $GETWORLD
to cnable a user to save the state of the world, make any modifi-
cations that he might desire, and when he is finished to get back
to where he was. It is, of course, only necessary to use these
commands when the user intends to type LOGO commands which will
modify the cexisting procedure structures or global names. The
user may define his own LOGO procedures to aid in the '"looking
around" process. The Analysis Package (Part 3) contains several
examples of debugging and modification routines which are typical
of such procedures. (The naming conventions -- sentences for
global procedure names and § as first character of procedure

name must, of course, be adhered to in such procedures to avoid
conflict with student programs.)

The third execution-based type of information is a diagram
of the procedure structure at any point in the dribble file. By
using the command $DISPLAY :ROOT: the user generates a graphic
represcntation of the procedure structure startiﬂg at ;ROOT:.
The primitives for this display are generated as part of the
augmentation of the dribble file during "parsing."

$WHERE is a general interrogatory command which tells the
user where he is in the dribble file-~that is, up to which 1line
he has executed, and the set of procedures which have been defined
at this point, As part of the graphics display, if a procedure
is being defined at that point, we also show, in smaller print,

the entire definition of the procedure at that moment in time.

1-42

Report No. 2625 Bolt Beranek and Newman Inc,

For the other major mode of run-time analysis, a completecly
separate class of commands enables the user to interrogate the
dribble file without any execution. The command $ALLDESCR outputs
a list of all the different descriptors used in comments through-
out the dribble file. This command is useful in connection with
subsequent execution because any of these descriptors can be used
as a modifier with $DOUNTIL to terminate execution. We can also
obtain the set of lines containing any given descriptor with the
command $FINDLINES :LINE NUMBER: :DESCRIPTOR:. This command
types all the lines after :LINE NUMBER: in the dribble file which
contain that descriptor.

We can readily construct the definition of any procedure at
any point in the dribble file using only information that was
there during parsing, i.e., without any execution whatever.
$STEPTHROUGH :PROCEDURE NAME: prints the successive variations of
*PROCEDURE NAME: as subsequent lines were defined: it first
gives the original title of the procedure, then the first line,
etc. If a line is replaced, the new line replaces the old line.
Thus the definition of :PROCEDURE NAME: ”unfoldsﬂ'in time.

9.4 Modifying the Display

Two predicate procedures are included in the package to
facilitate user modification of display and execution of dribble
file lines. (Of course, an ambitious user can modify the package
in other ways.) $NICEP enables the user to definé additional
criteria for execution or non-execution of dribble file lines.
(Lines whick parse badly are never executed independent of
$NICEP.) If $NICEP outputs "FALSE", the line is not executed.
Initially, $MNICEP is defined as,

1-43

Report No. 2625 Bolt Beranek and Newman Inc,

TO SNICEP
19 OUTPUT "TRUE"
END

Additional lines of the form IF OUTPUT "FALSE" can be added to
achieve the desired effect.

$SHOWLINEP can be used to control the form of the dribble
line display. For example, the user may not wish to see the
stored linés being retrieved by a GET contained in the file.
Initially $SHOWLINEP is defined as:

TO $SHOWLINEP
19 OUTPUT "FALSE"
END

This defaults to the standard display of each line. The
output "TRUE" overrides this display, thus to avoid seeing stored
lines, for example, merely change line 1§ to

19 IF $STOREDP :DRIBBLE NO: OUTPUT "TRUE"
ELSE OUTPUT "FALSE"

where $STOREDP merely reports the non-emptiness of "(:DRIBBLE NO:)
A.. .

9.5 Summary of RUN Commands

The RUN system commands are listed and briefly described
in Table 5 following.

1-44

Report 2625

$STARTRUN
$DOLINE
$DOTO :N:
$DOUNTIL
$DOALL

$SAVEWORLD
$GETWORLD

$WHERE

$DISPLAY

$ALLDESCR
$FINDLINES :N:

$STEPPROCEDURE

$NICEP
$SHOWLINEP

:COND:

:ROOT:

Bolt Beranek and Newman Inc.

initiaiizes RUN system
executes next line of dribble file
executes until line :N:

:COND:

entire dribble file

executes until the comment is found

executes

save current status of workspace

retrieve previously saved status

prints information on current position in
file

displays procedure structure as of current.
position in dribble file, starting at
:ROOT:

lists all comments in dribble file

: DESCRIPTOR: lists all lines after :N: contain-
ing :!DESCRIPTOR: as part of the
comment .

:PNAME: "unfolds" definition of :PNAME: across

entire dribble file

user-defined procedures to
modify display

TABLE 5. Summary of RUN Commands.

1-45

Report No. 2625 Bolt Beranek and Newman Inc,

Part 2.

System Documentation

Report No. 2625 Bolt Beranek and Newman Inc.

1. Introduction to System Documentation

In the preceding User's Guide (Part 1) we have given a
general description of the parts of our dribble file analysis
system as well as instructions on their usc. Here we present
the annotated set of programs as a more complete documentation
of our system. For ease in user extension and customization,
all these programs except for a few very trivial front end
procedures were written in the LOGO programming language, a

complete description of which is contained in the Appendix.

Generally speaking, there are two types of information of
interest to a user in the analysis of dribble files. First there
are queries which involve, or potentially involve, the entire
state of the world created by the student's work up to that point.
(What happens when this program is run with inputs X and Y?)

A common query of this kind calls for execution of a procedure,
possibly invoking any number of other procedures,

On the other hand, a question may require only a very small
local part of the state of the world for its answer: at what
point was procedure P defined? what was its definition at
time t?, etc. Questions involving the entire state of the world
require that the entire state of the world be recreated. It
turns out, however, that auxiliary information generated during
pre-processing of the dribble file can be used to directly answer
broad classes of this latter type of question without having
difficult searches or any live execution.

Furthermore, as we will describe later, the preprocessing
can be modified by user-written or user-specified programs so

that auxiliary information is generated in advance to answer

Report No. 2625 Bolt Beranck and Newman Inc.

efficiently whatever additional classes of "local'" questions are
deemed to be of interest.

Thus, we subdivide the preprocessing phase into two subphases,
first, the preprocessing proper in which relatively straight-
forward modifications are made to the text to put it into a form
better suited for further work and, sccond, a preanalysis or
parsing phase in which the auxiliary information mentioned above
is generated. These two parts of the preprocessing are sharply
distinguished in our implementation, which has a TECO macro
preprocessor driving a LOGO "parsing analyzer."

Section 2 of the system documentation contains a brief
description of the ground rules under which the programming was
performed. Sections 3, 4, and 5 contain annotated listings of
the three parts of the system described above -- preprocessing,
parsing, and running. Further information on the graphics
capabilities utilized is required, since LOGO graphics tend to
be relatively system-dependent, Section 6 contains a description

both of the facilities used and of other possible configurations.

2. The Use of LOGO as Both System and Object Language

In addition to using the LOGO programming language as an
"object language'" for student programming work, we have chosen
it as the vehicle for implementation of the dribble file analysis
system. Our choice of LOGO for the analysis system programming
language was made with considerable deliberation after consider-
ing several other alternatives, including LISP, PL-1, and
FORTRAN IV. Those very features which make LOGO so useful in
the classroom are the ones that enable a relatively unsophisti-

cated user to modify and extend the programs in the dribble file

~
t
N

Report No. 2625 ‘ Bolt Beranck and Newman Inc.

analysis system. Chief among thesc fecatures are a procedural-

based programming heuristic and an unusually pure and context-free
syntax.

We rcalized that there are certain dangers in choosiné the
same language for both the analysis and the object being analyzed.
The fact that, in a sense, LOGO syntax is used to analyze LOGO
syntax can iead to a system inbred to a degrece which makes trans-
ferability to other object languages impossible in any practical
sense. For cxample, error diagnostics can be genecrated directly
from the run-time stacks instead of by an external parsing
procedure. 1In the extreme case, the dribble file analysis system

could become just an extension of the LOGO interpreter.

To avoid such difficulties, we made the firm rule that the
only way in which the LOGO interpreter would be used in conjunc-
tion with the contents of dribble files would be via an EXECUTE
LINE type of command (that is, in "running" dribble files. All
sorts ¢f editing and viewing are permitted as long as they are
exterrnal to the LOGO evaluator.). Everything else would be done

by procedures exteraal to this interaction (which '"happen'" to be

written in LOGO). This decision enables the system we have
developed to be useable with any language having some sort of
execute command (i.e., with virtually all languages). All that

neceds to be done is to have the execute command implemented
inside the LOGO ‘interpreter. More will be written later about
differences between various '"object languages™ vis-a-vis the
design and use of the dribble file analysis system.

2-3

Report No. 2625 Bolt Beranek and Newman Inc.

3. The Preprocessing

A gencral description of preprocessing appears in the User's
Guide. The preprocessing is done by a set of eight TECO*'maEros,
which are called in turn by a "loading" macro that also elicits
input and output file name. 'The specific effects of each macro
are as follows:

LOADER) Loads rest of TECO macros, elicits input and output file
designations, and executes macros. (
1) Erases first line of dribble file which just contains

identificétion. Changes and @ to (ASCII 31)

to ensure proper line termination. Checks for last
character of file being . Changes 1line feed to
space., _

2) Finds rubouts, deletes line to that point. Marks
at end of preceding line.

3) Finds lines containing @ and @ and changes all
editing characters to textual equivalents, since at this
point it would be too difficult to fecovﬁr the context
in which (:) and (:) operate,

4) Performs effects of \ and @ , in order, left to right.

5) Finds stored lines and marks them with @,

6) Kills time marks.

7) Numbers lines and comments (RUBOUT and STORED) .in form
as LOGO names.

8) Spaces out separators.

*TECO is the character-oriented text editing language on the
DEC PDP-10. It is described in the DEC System-10 User's
Handbook and the modifications made by BBN are given in TENEX
TECO, a BBN report, NIC 19937.

2-4

Report No. 2625) Bolt Beranek and Newman Inc,

LOADER.TEC

*4T E

TEROE.TES I';IH'#HERTHD rE-":H< FERTHREE. TE Y AFERFOUR ., TECEHEGIERF INE, TECE
PSS EER T I XK, TECEHA R EERZEVEN ., TECIHH P FEREIGHT, ch:i:H:a’.E:}:;'fr..'-ilfi‘-r-is_"I:u‘-1.3=:I:I-141I:!45r5i'113
v BT RS EESHE

L 3

ONE.TEC

33 &R Crere
0-.I.I:i<:l:<:£; E-TE3IL 5> u._t.;-.<:.séf“ “NEE@

Ei -DEI E>E<i3°3FF F~DEILIE> 3 (2-10 JECIA-310 "HE

31187
TWO.TEC

£ y(&o8ep 0

0JE<: 58 BOKE-2CECIA-137) "HNE12P 157 >

*

THREE. TEC

i; .
OJECE ZMMES DK - CUR-21 ¢ (IR-210003 <ia- 935'Eﬁ-DﬁIRKSLHSH$’FCIH~ES"E£~
$ODEICTRL-WEZE (1A-14 "EF~-DEICTRL-ME ECIA-130 "EF-DEICTRL-®F 5> B> 0JE < 2 F3
SR - (iA~210 ¢ CIR=-21007 3 (18-18)"E£-DII?<-LHSHI FIA-23) "EF~DFICTRL~M
¢ R AR-14) "EF-DEICTRU-ME EX1A-12) "SE-DEICTRL-FRE” E> 1>
*

FOUR.TEC
33
OJEYBESICRC, =20 "ELOENDE IfIH—QL)"EF-ED£DEEE£’£(1H~333'E£-DE<-CB(1~((1H—3
00*)0(lH-n_J0(1H~JI)O(IH*:15)3s FDE> B FORESEF ML F
L 4

Report No. 2625 Bolt Beranck and Newman Inc,

FIVE.TEC

I3
NDIECE 000t a0k L=CFI3E>0.0<e 33400 Q0% -DEL-CEIE
[
SIX.TEC
b3

AL -2+ 5 ZDEY LDGP!Tle—-°J"”fﬂfDLDDPF’I(IH—IE?)"E&D%ULDDP£’¥(19—64)“E
*¢EDEOLO32 57 F<1A~21) "EE-TE"

)X I 5 .
¢
SEVEN.TEC
)3
QJEQIZTEL L, -Z+1) IMAKEERZNI E%2~E] HESOII RE2OIEL- °II(IH-h4>"EIDDL?IdHi Fea

+4TE02~1 ARZ0]] E2OIIRISTOREDESOTE]
| N RIS A XS T 1E73 "ZFDOLEIMAKE RS O] BOZVE] EESQIED BEOIIRUEBOUTESOILE]
HL-SCE BCE2OTIED LD ‘ .

.
EIGHT.TEC

82

JAL54h I-.-.DbfnI{:.g",}:;.f;-l.::-[:l FICEI _I,,I]J(:;:I;r s 3 00 3 U I Br0d<: o} f"f-'"

o LCED BACEL E:-DU<iZ+EIE-10CE] FICED Br00433-F5 =108 EBICEI F R0 {SS:I;B—

*¢1CED EICEI I>u|i:£ﬂ£§f~lt$[FICEL B>Q0< 3¢ESE-1CE] BICED B> Q1< 2 k3 B-1

*ecFL BLSEL B EOU<:3=EiE-1CED FICEL B>

»

2-6

Report No. 2625 Bolt.Beranck and Newman Inc.

4, Parsing

The procedure structure of this s2ction of the program is
quite completely discussed in the User's Guide. The main omission
there is discussion of multiline commands - EDT, EDL, and two-line
MAKE commands. These are all handled correctly by the parser,
except in those cases for the first two in which’ 4N and 4#R
are used. The parser simply puts such lines as comments following
the EDT or EDL instead of expanding them. It is not particularly
difficult to handle this properly if it is felt necessary.to do
so. The annotated program listings follow. The main procedures
are given in a fairly natural order, followed by the small utility
programs marked U, and empty user-definable procedures (as
described in the User's Guide, Part 1) marked E.

(1]

e ——— T2

@ SIINITNANES
28 TYPE "DRIBBLE FILE:“
30 DO SENTEHCYE “"GET" REQUEST
U3 $GOIHRCUGH 1
END

[2]

TG S$PINITNAMLS JINITIALTZES LIST NF BUILTINS 10 BE OF FORM “(BUILTIN) BP
.*li Is "A“,

@ ERASE ALL NAMES
20 $$IX 3$vbP
END

(3]

TO $$IX ILIST! ;USED BY INITNAMES)

@ IF EMPTYP :LIST: STOP

20 MAKE SENLZNCE »gp“ FIRST :LIST} "a“
380 $3%IX BUIYIKST $LIST:

END

”:

2-7

Report No. 262§ Bolt Beranck and Newman Inc.

(4]

T0 $%¥BP jpU_.D BY $%1IX3

2 QUTPUT "HKBBREVIATE AND ASK A3 BACK BOTH BULFLRST BUTLAST CANCZIL CLOCK
¥¥ COUNT DAYE DIFFERENCE DIVISION DO
s+ EDIT EDIILIBE EDITTITLE BITHER EN
«*PTYP END ENTRIES ERASE ERASELINE E
#*XI7 FIRST FRONT GET GO GOTOLINE GO
w*ODBYE GREATHRP HORN IFFALSE IFTRUER
«* JIGNORE IS LAST LEFT LINES LIST LO
»*CAL MAKE MAXIMUM MININUM NUMBERP O
«+*F OUTPUL PRINT PRODUCT QUOTIENT RA
*++NDOM REMAINDER REQUEST RESETCLOCK
¢«*RIGHT SAVE SENTENCE SENTENCEP SIZE
s* STOP SUM TEXT TEST THING TIME TIT
«+LFE 10 TOUCHLEF¥T TOUCHRIGHT TRACE T
¢+YPE WAIT WORD WORDP ZKROP + . « /
«%) (IF THEN ELSE ABB BF BL C DIFF
«+EDL EDT EL EP ER ERL ¥ GTJ GB GP I
«*FF IFT L NAX MIN NP OP P PR QUO RE
¢ REQ S SP SS T WP W ZP SENTENCES
4*5S n"

END

[51]

TO $GOTHRCUGH IDRIBBLEZ NO! ITERATES PARSING THROUGH LINES}

5 WAKE "CURR:ZNT LINP" SENTENCES THING SENTENCE !DRIBBLE NO: “N“
.6 TEST ENPLYP :CURRENT LINE:

20 IFTRUE $CLEANUP

38 XIFTRUZ -iQP

46 $STARTLINE

50 $GOTHRCUGH SUM :DRIBBLE NO: 1

END

2-8

Report No. 2625 ' Bolt Beranek and Newman Inc.

{6}

TO BSTARTLINE JPARSES ONE LINE, DISPATCHES ON TYPE OF LINE TO $DOLINE,$2
¥*MAKE (2LINE MAKE) $STORED OR ONE O
s#F UHE PROCEDURES INDICATED ON LINE
o 1105

'® FSEXAMINELINE

23 IF FUSEUPLINE STOP

30 MAKE "CURRENT LINE" $S5UCKALLSEMIS :CURRENT LINE:

4@ TEST $STOREDP ’

50 IFTRUS $..NDLINE

60 IFTRUE .:0P _

7% TFST $MP FIRST !CURRENT LINE; "GEY SAVE GOUDBYE GB CANGEL GO

83 IFTRUE SADDYRROR "NOT.GURRENT"

99 IFTRUE $.NDLINE

.B® IFTRUE STUP .

18 IF NOT _ITHEX $2MAKE $DISPAYCHP FIRST :CURRENT LINE: "TO $PARSETO ED

‘ ~ «*I7 »PARSESDIT END $PARSEEND ERASE
+*SPARSEERASE ERL $PLERASE EDL $PLED
««IT EDT $PIEDIT TITLE $PTITLE" THEN
«* $DOLINE ‘

29 SCEDLIN.

END

(7]

TO _SDISPATCHP :EL! ILIST: ;CALLS PROCEDURE ON 1LIST! WHICH FOLLOWS :EL:,
++ OUTPUTS "FALSE” ON FAILURE;

'@ IF EMPTYP 3LIST: OUTPUT “"FALSE"

20 TEST IS iZL! FIEST :LTIST!

25 IFTRUEZ MAKE “CURRSNT LINE" BUTFIRSI ICURRENT LINGZ:
33 IFTRUE DO rIRST BUTFIRST $LIsY:

4@ IFTRUE OUTPUT "“TRUE"

58 QUTPUT $VISPATCHP (EL!‘BUTFIRST BUTFIRST $LIST!
END ‘

N
1
N =]

Report No. 20625 Bolt Beranck and Newman Inc.

(8]

TO $DOLINE HANDLES “NONSFECIAL" LINE}

‘@ IF EMPTYP SCURRENT 1LIKLI! STOY

20 $LXAMINB.L

22 TLST 3%U...UPEL

25 IFTRUE %DLOLINE

28 IFTRUE .woOP

30 TESY EIIHER NUMBZRP FIRST $SCURRENT LINE: $BULLTINP FIRST I1CURRENT LIN
«+E!

U9 IFTRUE MAKE "CURRENT LINE" BUTFIRST :CURRENT LINgZ:

50 IFTRUE %$DOLINE :)

60 IFTRUE .10P

79 TEST IS FIRST :CURRENT LINE! :QUOTE:

80 IFTRUE MAKE “CURRENT LINE" $SUCKQUOTE BUTFIRST ICURRENT LINE}

90 IFTRUE 3DCLINE

@9 IFTRUE STOP

.10 TEST I FLRST $CURRENT LINE: wgn

120 IFTRUE NAKE “CURRENT LINE"™ $SUCKSEMI BUTFIRST (CURRENT LINE:

130 IFTRUE $DOLINE

48 IFTRUE sSTOP

5@ TEST I: FLIRST $CURRDNT LINE: "3"

168 IFIRUL MAKE "CURRENT LINE" $5UCKDOTS BUTFIRST SCURRENT LINE}

179 IFTRUE $DOLINE)

‘80 IFIRUE STOP :

90 $ADDSTRUC FINST $CURRENT LINE}

200 MAKE "“CURKENT LINE"™ BUTFIRST JCURRENT LINE?

218 $DOLINE

END

(9]

T0 $2M;}_l_(_§ JRANDLES 2 LINE MAKES;

9 XF NOT IS ICURRENT LINE: "MAKE"™ OUTPUT “FALSE"
28 $PL2MAKE

30 QUTPUT "wRUE"

END

Report No, 2625 . Bolt Beranek and Newman Inc,

[10).

TO SPL2MAKE ;USED BY $2MRKE;

D IFTRUE $ADDERROR “MULTIHAXELINTERRUPTED®

200 XFTRUE $ADDLR&OR "HULTI-MAKELINTERRUPIED®

38 IFTRUE :uOPF

4g T&ST SRUBOUTP SUM :DRIBBLE NOI 1

50 IFTRUE BADDERROR “MULTX~MAKE-LINTERRUPTED"

68 IFTRUE $ADD SLETENCE SUM ¢DRIKBLE KO:! 1 "D" "HULTI~-MAKE~INTERRUPTED"

73 XFTRUE 400

8@ $ADD SENTENCE (DRIBBLE NO: "N" SENTENC« THING SUH (DRIBBLE NOS$ 1 "N
++THING SENTENCEL SUM {DRIBBLE NO: 2
‘*i.n"

9¢ $ADD SENLENCE SUMN :DRIBBLE No: 1t "D" "IGHORE"

80 $ADD SENTBLNCE SUN sDRIBBLE KOy 2 "D" vIGNORE"

710 MAKE "CURKRENT LINE®" THING SEHNTENCE (DRIBBLE NOI "p"

129 $STARTLINE

END

{11]

!1

TO $STOREDP jUSED BY $STAKTLINE TO HANDLE PROCEVURE LINE;

'@ IF NOT HUNBEARP FIRST $CURRENT LINI: OUTPUT "FALSH"
20 $DOSTCRED

39 oultpuT “ORVE™

END

[12]

T0 $DOSTORED }USED BY STOREDP;

TOTIF EfPTYP (CUKRENT PROC: SADDERROR "NOT-DEFININGM

28 IF GREAT=RP 1 FIRST :CURRENT LINE: $ADDERROR "INVALIDoLINENO®

23 $ADDSTRUC SENTENCE :CURRENT PROC: FIRST ICURRENT LINE:!

25 MAKE "CURRENT LINE™ BUTFIRST JCURRENT LINE:

38 $DOLINE - ,

48 IF $GOUDPARSEP (DRIBBLE NO! 3ADD SENTENCE "STRUC™ jCURREST PROC! SENT
v¢ENCE (DRIBBLE %O: FIRST THING SENT
¢+«ENCE (DRIBBLE NO: "N

5@ XIF NOT $GOODPARSEP $DRIBBLE NO{ MAKE SKENTENCE {DRIRBLE NOI ¥“C" EMPTY
s

END

2-11

Report No. 2625 Bolt Beranek and Newman Inec,

[13]

TO $PARSETO ;CALLZD BY $STARTLINE FOR PROCEDUKE DEFINITIONS)
9 ¥DOTITLE FIRST !CURRENT LINE: BUTFIRST ICURRENT LINE!?
END

[14)]

TO $DOTITLE :NAMNE! $ARGLIST: ;USED BY $PARSETO FOR PROCEDURE DEFINITION
**LIHLS;

i@ SCHECKNAME (NAME:
50 SSTARTVDEFKF INANE: $COUNTARGS :ARGLIST: 4]
END

(15]

TO SCHECKNAME :NAME: 3CHECKS VALIDITY OF NAME FOR DEFINITION OR
T - **REDEF IN1T10NS

i@ IF NUMBERP INAME: $ADDERROR “"NUWBER~NANE"

20 IF $HP -unns- ssnrvncs "() : ;" tQUOTE: SADDERROR "SEPARATOR~NAME"
38 IF $BUILZINP UAME: $ADDERROR "BUXLTINeNAHZ"

48 IF SDEFINZ DP NAME: $ADDERROR "ALKEADYwDEFLNED"

END

»e ee

[16)

TO $STARTLEYK INAHE: :N: ;PARSES TITLE LINE;

B IF NOT B3GOODP.RSEP :DRIBBLE NO: STOP

i5 MAKE YCURRENT FPROC™ $NAME: .

298 $KDD SENIZNCE "STRUC™ (NAME: SENTENCE IDRIBBLE NOt!t @

39 $ADD "FINAL CONTENTS" SENTENCES :NAME: :DRIBBLE NO: :NI
END

Report No. 2625 ' Bolt Beranek and Newman Inc,

[17)

TO0 $COUNTARGS SLIST: :CTR: 3CHECKS VALIDITY AND COQUNTS ARGS OF ARGLIST X
: ++N TITLE; . '

$ XF BEITHER IS FIRST {LIST: "AND" IS FIRST LLSIt “QF"” QUIPUT YCOUNTARGS
«¢ BUTFIRSY (LIST,; ;CIH,

'@ IF EMPTYP $LIST: OUTPUT $(CTR:

29 IF IS FIRST 3sLIST: "tv QUTPUT SCOUNTARQS $SUCKDOTES BUTFIRST tLIST: SU
«*} fCTR: 1

390 IF IS FIRST iLIST! ";" OUTPUT $COUNTARGS BSUCKSEMI BUTFIRST tLYIST: :¢
+*TRS

4@ SADDERROR fBADnARGUHENT"

52 QUTPUT

END

(18]

TO $DEFINEDP INAME! ;IS :NAME! CURRENTLY DEFINED?;

.0 MAKE "NAME" THING SENTENCE "STRUC" :NANE:R

20 IF SITHER EMNPTYP :NRMED IS LAST (NAME! "ERASE"™ OUTPUT "FALSE"
39 OQUTPUT "ULRUE")

-END

[19]

TO $PARSEEDLT ;USED BY $STARTLINE FOR ALL EDIT COMMANDS;
@ TLST IS FIRST {CURRENT LINE: “LINE" ’

20 IFTRUE $PLEDIT

39 IFTRUE .wOP

33 TEST 1S :{CURRENT LINE: "TITLE"

36 IFTRUE $PTEDIT

38 IFTRUE .uoP

4% TEST IS COUNT :CURRENT LINE! 1

56 IFFALSE $ADDERROX "EXTRAAARG.INSEDIT"

69 IFFALSE STUP

79 TLEST BOTH SDEFINEDP FIRST ICURRENT LINL: EMPLYP JCURRENT PROC!
82 IFFALSE $ADDERROR “BADEDIT" :

92 IFTRUE MAKE "CURRENT PROC" FIRST ICURRENT LIKES

2-13 ' i

Report No. 2625 Bolt Beranek and Newman Ine,

[20]

20 SPTEDIT ;¥1TLy EDYT-IGNORE THIS COBMMAKY AND FRECEDE NEXT LINE WITH “7
**ITLL"'

@ TEST EMP YP BUTFIRST $CURKENT LINE

20 IFFALSE YADDERROR “BAD-TITLB-EDIT"

30 IFFALSE £TOP

4@ $ADDERROR "IGHOR®E"

58 IF NOT $RUBOUTP :DRIBBLE NO! MAKE SENLLNCE SUM IDRIBBLE NO: ¢ "N" SEN
. ¢xTENCE "TITLE" THING SENTENCE SUM ¢

«*DRIBBLE NOt 1 “N“

END

[21)

TO $PLEDXT JLINE EDITwPUTS EDITTING COMMANDS UK LINZ FOLLOWING AS COMMEN
«+TS AT END OF PRESENT LINE FOR HAND
v+ INSERTION BY USER;

9 IGNOREZ $CHECKXLINE

30 IF $RUBOUTP :DRIBBLE NG: STOP

U@ BADD SENIENCE ";" THING SENTENCE SUM :URXBBLE NO§ "N" SENTENCE :DRIBB
' sxLE NOI “N*™

50 $ADD SENYENCE SUM IDRIBBLE NoO:! 1 "D" "IGKORE"

END

[22)

TO SPARSEELD ;USED BY $STARTLINE FOR THE END COMMAND;
i@ TLST ENP.LYP :CURRECNT LINE!
20 IFFALSE SADDERROR "EXTRA=IN-END"
30 IFFALSE STOP
. U@ TLST DHPLYP :CURREET PROC:
59 IFTRUE $ADDERROR "SUPERFLUOUS.END"
62 MAKE PCURRENT PRIC" EMPTYS
END

(23]

TO $PAKSEELASE ;USED 8Y $STARTLINE FOR ALL ERASE COMMANDS;};
@ TEST IS FIRST $CURRENT LINE; “LINE"
20 IFTRUE IPLERBASE
32 IFTRUE l10P
33 TEST IS FIRST $CURRENT LINE: "ALL"
36 IFTRUE 3IPARSEERAL
38 IFTRUE .10¥®
U@ TEST IS COUNT 3CURRENT LINE: 1
50 IFFALSE YADDERROR "BAD~ERASE"
63 IFFARLSE STUP
78 TESI 3IDEFINEDP FIKST (CURRENT LINE!
83 IFFALSE $ADDERROR "NOTHING«TQO~LRASE"
90 IFFALSE YTUP
@2 IF IS “CURRENT PROC"™ FIRST :CURRENT LIdE: MAKE "CURRENT PROC"™ 1EMPTY

e

10 SERKRSEPR ICURRENT LINE:
END

EKC

wll Toxt Provided by ERIC

2-14

Report No. 2625 Bolt Beranek and Newman Inc,

[24]

TO $PLERASE ;HANDLES ERASEZ LINE;
P IF HOT PCHECKLIMR STOEP
490 IF $GOCDPARSEP :DRIBBLE NO! $ADD SENTENCE "STRUC" :CURRENT PROCt SENT
' **ENCE DRIBBLE NO: WORD "<" LAST :C
**URRLNT LINES

END
[25)

TO SCHECKLIKE ;CHECKS VALIDITY OF LINE BEING CALLED FOR ALTERATION OR ER

*¥ASURLD,

@ TEST BOTH NUMBERP FIRST BUTFIRST :CURRBN& LINEY EMPTYP BUTFIRST BUTFKI
*«RST $CURRENT LINE:

20 XFTRUE SADDERKOR "NOTDEFINING"

25 IFTRUE OUTPUT "FALSE"™

38 TEST ENPLYP !CURRENT PROCEZDURE}

40 IFTRUE $ADVDERKROR "HOP~-DEFINING"

50 IFTRUZ OUTPUT "FALSE"

68 T:ST $MP LAST ICURRENT LINE: THING SENTENCE "STRUC" ICURRENT PROC:
7¢ IFTRUE BADUERROR “KO~SUCHeLINE" -

80 IFTRUE OUTPUT “FALSE"

99 QUTPUT "< RUE"

END

(26]

TO PPARSEERAL JHANDLES ALL ERASE ALLS;

0 MAKE "CURRENT LINE" RUTFIRST :CURRENT LINE:

20 TgST EXTHEZR EVPIYP jJCURRENT LINE! EITHER IS ICURRENT LINE! "pRS" IS ¢
¢**CURKZNT LINEY "PROCEDURESH

30 IFTRUE NAKE "CURRENT PROC" !ENPTY! ‘

35 IFTRUE MAKE SENTENCE $¢DRIBBLE NO: “N* “SERASEALLY

40 IFTRUE SPARSEERALL (FINAL CONTENTS: ‘

45 IFTRUBE 340P .

50 IF IS5 !CURRENT LINE: “TRACLS" STOP

68 TELST IS SCUKRLNY LINE: "NAMES™

70 IFTRUE LADDERROR "NOT-CURRENT"

80 IFTRUE .loOP

90 SADDERROR "BADeERASE-ALL™

END

[27)

TO $PARSEERALL :LIST: ;HANDLES FRASE ALL;

0 IF EMPTYF TLIST: STOP

20 IF SDEFIXZDP FIRST $LIST! SERASEPR FIRST :LIST}
30 $PARSEERALL BUTFIRST BUTFIRST BUTFIRSI (LIST:
END .

2-15

Report No. 2625 Bolt Beranek and Newman Inc.

(28]
TO SERASEPR INAMNEt ;HANDLES ERASE tNAME:;
‘0 $ADD SENTINCE "STRUC" INAME! SENTENCE $DRIBBLE NQ! "ERASE"
gsbsauo "FINAL CONTENTS™ SENTENCES {NAME: !DRINSBLE NOf "ERASE"
[29]

TO SPTITLE ;HANDLES TITLE COMMAND;
/@ TEST IS FIRST !CURRENT LINEg "TQ"
20 IFTRUE $CHANGETIYLE FIRST BUTFIRST tCURRENT LINEY{ BUTFIRST BUTFIRST H

«*CURRENT LINE:!
30 IFFALSE $ADDERROR "BAD=TITLE~COMMAND"
END

[30]

TO SCHANGETITLE :NANE: ;DOES WORK FOR S$PTITLE;

'@ TeST IS :NANE: :CURRENT PROCEDURE! i

20 IFFALSE $CHECKNAMZ :NAMES

30 IFFALSE “EST KOT $GOODPKRSEP :DRIBBLE NO:

4@ IFFALSE SADD SENTENCE "SYXRUC" yNAHE: THING SENTENCE "STRUC" jCURRENT
*¥PROC:

50 $STARTDEF INAHE: SCOUNTARGS :ARGLIST: ¢

END .

[31]

TO $CLEANUP ;CLEANS UP AT END OF PARSING;

'@ PRINT “PARSING COMPLETED, SAVE THE DRIBBLE FILE,"
20 MAKE "DRIBBLE NO" 4

30 DO "ERA:L ALL PROCEDURES"™

END

UTILITY PROCEDURES

TO $SUCKALLSIMIS {LINE: ;RENMNOVES ALL PAIRS OF SEMICOLONS AND THEIR CONTE
**NTS FROM ILINE}}

i9 IF NOT I3 FIRST :LINE: "3}" OUTPUT {LINE:
20 OUTPUT $SUCKALLSENIS $SUCKSEMI BUTFIRST jLLNEY
END

2-16

Report No, 2625 ' Bolt Beranck and Newman Inc,.

TO $SUCKSENI (LIKE! jUTILITY, SUCKS UP CONTENLIS OF SEMICOLONS;

@ IF EITHER EMPIYP ILINRY! IS FIRST tLINE! ";" OUTPYT BUTFIRST jLINE:
20 OUTPUT $SUCKSENX RUTFYRST $LINE!

END

TO $BUILTINE (NAME: ;UTILITY, XS INARHE! A BUILTINY}

3 IF ENPTYP THING SENTENCZ "BP* gNAHE: OUTPUY “FALSE"
20 QUTPUT "“uYRUR" '

END

TO ESUCKQUOYTE tLINE: ;UTILITY, SUCKS UPp CQNTENTS QF A PAIR OF QUOTES;
@ TEST ENPIYP LINPF:

28 IFTRUE ¥$ADDERROR "MATCHINGeQUOTH"

33 IFTRUE OUTPUT IEZMPTY!

43 IF NOT XS5 FIRST tLINKR: $QUOTgs OUTPUT BSUCKQUOTE BUTFIRST ILINE:
58 QUTPUT BUTFIRST !LINE:?

END

TO $SUCKDOTS (LINE: ;UTILITY, SUCKS UP CONTENTS OF A PAIR OF COLONS;
@ TEZST IS FIRST sLxues i

20 IFTRUE BADDERROR “EMPTY-NAME"

39 XIFTRUE OUTPUT $EMPTY:

ggDOUTPUT $SUCKDOTS1 BUTFIRST (LINES

T0 $ADDSTRUC (EL! PUTILITY, ADDS IEL{ TO SET OF STRUCTURE ELEMENTS BELON
»*GING TO "(DRIBZBLE HO) C"}

1@ IF NOT EMPTYP ;CURRENT PROC:! MAKE SENTELKCE 3DRIBBLE NOt "C" SENTENCE
«+*THING SENTENCY IDRIWBLE NO: “C" !B

e+l

END

TO $GOODPARSEP !N! ;UTILITY, DOES DRIBBLE LINg :N§ RAVE Aﬂ! PARSING ERRO
**RS?} :

‘3 OUTPUT EMPTYP THING SENTENGCE tH! "D

END

TO ¥SUCKDCISY ILINE: ;USED BY SUCKDOTS;
'@ TEST ENPUYP (LIKNfF:

20 XFTRUE BADDERRCR "WATCHINGoDOTS"

33 IFTRUE OUTPUT (EMPTY:

43 IF NOT IS FIRST (LIGES: “3i" OUTPUT $SUCKDOTS1 BUTFIRST ILINE:
53 OUTPUT BUTKFIRST :LINE:

END

2-17

Report No. 2625 Bolt Beranek and Newman Inc,

TO $MP ITHING! $LIST: ;UTILITY, IS $¢THING{ AN ELEMNENT OF 1LIST!?)
@ T=ST ENP.YP LIST,
203 IFTRUE OUTPUT "FRrLSE"®

390 IF IS (THUNGS FYXKST $LYIST: OUTPUT “TRUE"
4@ OUTPUT $MP 1THING: BUTFIRST $LIST:

END

TO_$/:DDERROR :MES: ;UTILITY, ADDS $MES: AS "ERRUR™ XE TO VALUE QF "(DRIB
«*BLE NO) D"}

@ $4DD SERYEINCE :DRIBBLE NO: "D" {MES:

END

TO $4DD (PLACEY IMES: jUTILITY, CONCATENATES (MESY WITH CURRENT VALUE OF

«*+ SPLACE:}
i@ MAKE tPLACE! SENTEZNCE THING $PLACE: $MKES:

ERD

TO $2DDSYSC iMES: ;ADDS COMHENT TO GURRENT DRIBBLE FILE LINE (TQ VARIABL
**E "(DRIBBLE NO) B")}

‘@ $ADD SEN.LNCE :DRIBBLE NO: "B" $HES!

END

TO SEUBOUTP :H: ;UTILITY, WAS LINE FOLLOWING 3:Ni RUBBED OVUT? NEEDED FOR
- ' +«+MULTILINE COMMANDS SUCH AS EDT, MA
++XE ETC)

-@ OQUTPUT $MP “RUBOUT" THING SENTENCE :N: "A" | .

END]
) . .

Report No. 2625 Bolt Beranck and Newman Inc,

USER-DEFINABLE PROCLEDURES

JO0 $:XAMIKE. L JEMNPIY PROCEDURE DESFINABLE HY USEKR (STE USEKS GUIDE)., FILL
¥*ED LN HuRL TO CORRESPOUD TO SET of -
** EXAMPLES,}

@ I¥ NOT IS FIRST $CURRENT LINE: $CURRENT PROC: ST0P

20 XF NOT 3¥IMP "RECURSIVE™ THING SENTENCE {DRIBBLE NO: “B" $ADD SENTENCE
**JDRIBBLL NO! “B" "RECURSIVE"

END

TO _$USpUPEL EMPTY,USER DEFINABLE PROCEDURE, SEE USERS GUXpDE FOR APPLICH
«*TIONS,}

@ OUTPUT “EFALSE"
END

TO SEXAMINELIHE.;EHPTY,USER DEFINABLE PROCEDURE DESCRIBED IN USERS GUIDE
LA

ERD

X0 SUSEUPLINE JEMPTY, USER DEFINABLE PROCEDURE DESRCIBED IN USERS GUIDE;
0 OUTPUL "FaLsu® :
END

0 ¥eNDLINE ;eMPTY,USER DEFINABLE PROCEDURE DESCRIBED IN VSERS GUIDE;
END :

‘) 2-19

Report No. 2625 BolIt Beranck and Newman Inc,

S. Running

The general procedure structure is again described in the
User's Guide. The annotated listings here separate rather neatly
into two parts: the graphics part, all subprocedures of $DISPLAY
and the non-graphics, text-oriented commands.

[1]
TO $STARTRUN JINITIALIZES SYSTEN,
5 ERASE ALL NAMES
'@ TYPE "DRLBBLE FILE:"
20 DO SENTZHCE “GET" REQUEST
@ MAKE "DRIBBLE NO“ 2
END

[2]

TO SSAVEWORLD jSAVE CURRENT STATUS OF WORK ON DRIBBLE FILE}
i@ SAVE THE WORLD
END

[3)

TO_$GETWORLD ;RETRIEVE PREVIOUSLY SAVED WORK STATUS;
yp ERASE ALL NAMES

23 ERASE ALL ABBREVIATIONS

3y PRINT "ITYPE; GET THE WORLD"

40 ERASE ALL PROCEDURES

END

[4)

TO _SDOLIKL jDISPLAYS AND EXLCUTES ONE DRIBBLE LINE)

5 MAKE "DRIBBLE NO" SUK :DRLBBLE NO: 1

@ T.ST $GOODPARSEF :DRIBBLE NO3

't IF HOT $SHUWLIUEP IFTRUZ ¥DISP :DLIBBLE MO

12 IF HOT SKICEP STOP ELSE IFFALSE STOP

5 MAKE "CURREET PROCZDURE" FIRST THING SENTENCEL IDRIBBLE NO: “C"

20 IF NOT LHPTYP THING SENTENCE (DRIBBLE NO: “C" MAKE SENTENCE SENTENCE
¢#"GRAPH" 3CURRENT PROCEDURE! FIRST
«+BUTFIRST THING SENTENCE $DRIBBLE N
«#0: "C" BUTFIRST BUTFIRST THING SEN
++TENCE :DRIBBLE NO: "C"

G SENTENCE $DRIBBLE NO: "N

8 ?g gg%’sx%ﬁngsigxongﬁzg znpgwp ICURRENT PROCEDURE: $3GUODLIST $CURREN

#*T PROCEDUKE} AND - 509 AND - 500

3
u

2-20

Report No. 2625 Bolt Beranck and Newman Inc.

(5]
T0 $DOTO INUNI EXECUTES DRIBBLE LINES TO LINg NUMBERED tNUM3J

@ S$DOLINE

3¢ IF GREAI/RP SUM $DRIBBLE HO! 1 iNUM! STOP
4@ IF FEOF STOP ~

5¢ $DOTO txUi:

END

(6]

TO _SDOUNII. tDESCR: ;EXECUTE DRIDBLE LINES UNYIL tDESCRI IS FOUND IN & ¢
**ONNENT 1AG)

i@ $DOLINE

30 IF EITHER $DESCP $DESCR: :DRIBEBLE NO: $SEOF S1QP
50 $DOUNTIL SUESCR: '

END

(7]

TO_$DOALL 7uXECUTE ENTIRE DRISBLE FILE, STARTING AT CURRENT POSITION;
i@ $DOLINE :

34 IF $EOF STOP

up $DoALL

END

18]
IO $WHERL ,GIVES STATUS of USER,
i@ PRINT SENTENCE “AT DRIBBLE LINE" $DRIBHLE NO:
'5 PRINT "#84##WHICH Is”
2@ PRINT THIKS SENTYNCE 3$DRIBBLE NOg "Nv
30 PRINT SENTZNCE SENTENCE “THE PROCHDURES" $SUPTOLINE $FINAL CONTENTS:
: «xHAVE BEEN DEFIHED"

END
(9]
TO SALLDESCR JGIVES LIST OF ALL COMMENTS IN DRIBBLE FILE , IE VALUES OF
t@ PRINT BALLDESCRT 1 “x" (R} B}
END
(10}

T0 $ALLDESCHK1 ¢N: 3USED BY $ALLDESCR}

i@ IF ENPTYP THING SENTENCE :N: “N" OUTPUT :(EMPIY}

20 OUTPUT 3IUNLON (SENTENCES THING SENTENCE :N$ "B") (SENTENCES SALLDE
«xSCR1 SUNM N3 1)

END

2-21

Report No. 20625 Bolt Beranck and Newman Inc,

[11]

TO_SSYEPPROCEDURE !PROCHNANL! FSTEPS THROUGH SUCCESSIVE VEKSLONS OF DEFIN
¢+ITI0F OF :PROCNAME: ACROSS ENTIRE
«¥DRIBBLE FILE;
9 SSTEPTHIOUGH IENPTY: THING SENTENCE "STRUC“ :PROCNAME!
END

[12]

TO_$STEPTHLOUGH !LISTONEt :LISTTWOS MAIN SUBPRCCEDURE OF STEPPROCEDURE;
@ IF LMPTY? (LISTTWO: STOP

28 MAKE “"LISTONE" $ADDALINY SENTENCE FIRST $(LISYTWO} YIRST BUTFIRST :LIS
#2TTHO! 3LISTON;

39 $PRINWLIST !LISTONE: FIRST !LISTTWO: - ’

35 IGHORL &.QUESY :

U@ $STEPYHROUGH (LYSTONE: BUTFIRST BUTFIKRST :LISTTHO:

END

{13]

TO $ADDALIN. SLINE PAIRS: YCURRENT LIST! ;USED BY BSTEPPROCEDURE TO PUT N
" w*EW LINE tLINE PAIR! INTO $CURRENT
#«LIST: WHICH XS PREVIOUS STAGE;
IF SMPUYYP SCOURRENT LYIST! OUTPUT !LINE PAIR:
3 IF IS FIUST BUTFIEST ILINE PAIR! “ERASE"™ OUTPUT (gMPTY:

6 IF IS F1liST FPIRST BUTFIRST (LINE PAIR: ?-" OULPUT $DELETE BUTFIRST FIR
. «xST BUTFIRST JLINE PAIR; tCURRENT |
«*xISTY

‘@ IF IS FIRST yUTFIRST :LINE PAIR: FIRSYL BUTFIKRST ICURRENT LIST: OUTPUT
#*¥ SENTENCE ILINE PAXRS BUTFIRST BU
v*TFIRSY $CURRENT LIST:

20 IF GRERI.LRP FIRSY BUTFIRST (CURRENT LIST: FIRST BUTFIRST ILINE PAIR:
+*0UTPUT SENTENCE :LINE PAIR: :CURRE
«*NT LIST:

380 OUTPUY .._HNTENCE SENTENCF FIRST (CURRENT LIST: FIRST BUTFIRST JCURRENT
*+ LIST: SARUDALINE $SLINE PAIR: BUIFI
+*RST BULIFIRST §CURRENT LIST:

END

[14]

TO $PRYNWLIST :(LISTt {CURRENT LINE: jPRINTS EACH STAGE OF $STLPPROCEDURE
l\‘,

.@ IF EMPTYP :LIST: STOP

.5 IF IS FIRST $LIST: tCURRENT LINE: TYPE "==>"

20 PRINT THING SLNIENCE FIRST tLIST: "N“

30 S$PRINYLIST BUTFIRST BUTFIKRST :fLIST: :CURR:ENT LINE:
END

2-22

Roport No, 2625 Bolt Beranck and Newman Inc,

[15]

TO SFINDLIN.S IFRONS $DESCRIPTOR{ ;FINDS ALL UCCURRENCES OF :DESCRIPTUR:
e%x IN COMNENT TAGS STARTING AT LINL
%+ $FROM

@ IF EMPLYP THING SENTENCE $FRONM: "N" ST0P

20 IF $D&SCP SDHSCRIPTOR: tFROMS PRINT SENTENCES tDESCRIPLOKY “IN" 1pROM

: ¢¥] "o--" THING (SENTENCE |FROM: "R

LE AL .

3¢ SFPINDLIN:LS (!FROM$+1) ¢DESCRIPTIOR!

END

{16}

10 $UPTOL1N1 SLIST: ;COMPUTES THRT PARY OF $FINAL CONTENTS: WHICH HAS BE
¥*EN ULFIhED AS OF $DKRIBBLE N

i@ IF EMPTYP !LIST: OQUTPUT $EMPTY:

20 IF GREATWRP LAST BUTLAST :LIST! :DRIBBLE NO: OUTPUT SUPTOLINE BUTLAST
«+ BUTLAST BUTLAST :LIST:

390 IF IS LAST :tLIST: "axgsa" OUTPUT BHEMOYE LASY BUTLAST BUTLAST $LIST:
¢+*SUPTOLINE BUTLAST BUTLAST BUTLASY
«*xLIST!

49 QUTPUY -.NTENCE SUPTOLINE BUTLAST BUTLAST BUTLAST $LIST: LAST BUTLAST
¢+ BUTLAST $LIST:

END

(17]
XO $GOODLI.* INAMES X3 :¥: jPRINTS PROCEDURL DEFINYITION IN SMALL LETTER
*#S ON LOWER LEFT OF DISPLAY, USED T
*+*0 SHOW CURRENT STATVUS OF PROCLDURE
+% DEF}

3 WIPE

6 MESSAGE "¢¥ pv wow

i@ $GOODLIsv1 INAME: LINES INAMES 1Xt 1Y
END

[18]
TO $G0O0DLL.:1 :NANE:

o
[
[
>

1Y: jCOMPUIES PUSLTION OF FLRST LINE FOR §
*3GOODLIST}

'@ $600DLI..2 $INAMEP ILL: tX: SUM 1Y: SUN 12 PRODUCT 12 $COUNTT jpL:

END \ | .

[19]

f0 $GOODLX .w2 INANE! S$LL} X $Y! jDISPLAYS TITLE LINE FOR $G600pLIST;
@ MoSSAGE SZWTENCE $X: SUM :Y: 12 BUTFIRST TEXY INKHE:
20 $GOODLI..3 :(NAME: fLL: :X: 1Y:

END

Report No, 2625 | Bolt Beﬁanek and Newman Inc,

(20]

TO $GOODLI .3 !NAME: $LL: $¢X: t¥: ;PRINTS LINES OF {NAMES$ FOR $GOODLIST
LY

'@ TEST CHP.YP sLL:

22 IFTRUE M.SSAGE SENTENCE $X: :Y$ “END®

30 IFTRUE QP)

U3 MESSAGE SELHNTENCE ¢X: :¥: YEXT §NAME! FIRST LYY

Sg $GOODLI. =3 INAME: BUTFIRST !LL} X3 DIFFERENCE $Y} 12
END

GRAPHICS

[21]

T0 $DISPLAY !ROOT: ;MAIN DISPLAY PROCEDURE;
i@ PMAKEALLGRAPHS

20 $NREWROUT 1ROOTS

END

[22]

TO SMAKELLLOGRAPHS jGEZNERATES A COMPLLTE SET OF CURRENT PRUCADURE CONNECT
. «xTONS}

S SEMPIYGHRLPHS HSUPLOLINE (FINAL CONTENTS:

i@ $MAKEGHAPH1 SUPTOLINE $FINAL CONTENTS:

END

[23]

TO $ MPTYGRAPHS 1LISTt ;ENPTIES ALL VARIABﬂES Or FORM "GRAPH (PNAME)" AN
+3D "GRAPHT (PNAME)" AS PART OF INIT
“*TALIZATION OF DISPLAY}

1@ IF EMPTYP (LIST: SToOP

‘5 MAKE SENUENCE "GRAPH"™ FIRST $LIST: (EMPTY:

20 MAKE SENUINCE "GREPHT™ FIRST $LYIST: :2dPTY:
33D$EMPTYGRAPHS BUTFIRST ILIST:

EN

[24]) _
TO $MAKEGRAPH1 (LIS .
IF CHPTYP :LIST: STOP
5 MAKR "L1.2" SEHNTEZNCE $LIST: sEMPTY:
20 MiKE SEW:ENCE "GKAPH" FIRST ;LIST; SMAKEGRAPH FIRST $LIST; LINES FIRS
#«T 1LIST:

30 $MAKEGKAPH1 BUTFIRSY $LIST!
END

2-24

Repori No., 20625 Bolt Beranek and Newman Inc,

[25)
JO_BHAKEGHKAPH INAMES SLINE LIST: ;USED BY SMAKEGRAPHY TO CREAYE “GRAPH |
«¥PNANE)" VARIABLE;
@ IF ENPTYP SLINHZ LYSY: OUIPUD :ENPTY:
28 OUTPUT $UNLON THIKG SENTENCE SENTLNCE “GRAPH" INAME: FIRST :LINE LIST
s#} FMAKEGRAPR {NAME! BUTFIRST tLINE
*+ LIST:

END

[26)

TO $NIZWROLY :tHOOT: jGLNERATES NEW DISPLAY STAKTLNG AT :ROOT:}
2 PENUP ’

5 WIPE

7 MAKE "DI PLAY LIST" :EMPTY:

@ $CTREL :KOOT:

20 SMAKELEY.LS :RGOT:

30 FDRAWLEVLL 1 SLEVRL 1: ¢

4@ SIOOINLEY)LLS !#ARKED LXST!

END

[27]

TO $CIREL :HOOT: ;$CTRRE THROUGH $CTREESG CREATES THAT LIST OF PROCEDURE
$«COUNECTIONS ACTUALLY JOINED TO :RO
«*0T:; .

5 MAKZ "ifaRKED LIST" SENTENCZ $ROOT! $EWMPTY:

@ BCTREZT SEHNIXLCHS !ROQT:

END

[28]

TO SCTREE?T IR
@ TwST ENPUIYP
29 IFTRUE -uwQP
33 $CTREL?2 FIRST $R: BUTFIRST
END

R

£)

-2
an

(29]

TO $CTREEZ :R: 1S3
20 SCTREEJ iR: (SENTEONCES THING SENTENCE “GRAPH" Rt) 1S3
END .

{30]

TO $CTREE3I :R:
'@ TSST CHPIYP

28 IFTRUE $CTREE
380 IFTRUZ .+<QP
4@ SCTREE4 IR! FIRST isUc: BUDFIRST :SUC: :S:
END

2-25

Report No., 2625 Bolt Beranek and Newman Inc,

[31]
T0_S$CTRELYW :R: IFS5UC! :R5UC! &8
0 TEST $CTREES (PSUC!
20 IFFALSE MAKE SENTENCE "GRAPHT" $R) SENTENCE LHING SENTENCE "GRAPHT"
«+R3 1FSUC]
25 IFTRUE $CTHEE3 :R! :RsSUCc! !S:
26 IFFALSE aaKE "HARKKED LIST" SENTENCE $MARKED LIST} JFSUCH
3 IFFALSE SCTREE3I ¢R: $RSUC: SENTENCE $FSUC: 183
END

[32]

T0 SCTRELD 1Xi
@ OUTPUY BUTKEE6 :X: :MARKED LIST!
END

[33)

TO_SCTRELE i1x: L
1B TEST ph2.YP L
20 XFTRUZ OUIPUT "“Frrsg"

30 TSST X5 X8 FIR3T Lt

4@ IFTRULZ OQUTPUT “IRURM :

58 OUTPULY ¥ICTHER6 1X: BUTFIRST L3}
END

] «e oo

[34]

10 FMAKELEV.LS $ROOTPROC! ;CREATES THE LEYEL LISTS FOR DISPLAY, EACH LEY

**ElL BEING A LIST OF PNAMES WITH C00
: **RDINATES $ROOT: IS LEVEL 1)
i $4SROLEV-L 1 '
.5 MAKE "LEVEL 1" SENTENCE SENTENCE « 42 (ROOTPROC: 42
20 $MAKELEYLL 2 3 THING SENTENCE "GRAPHT‘“:ROOTPROC:
END \

(35]

TO $ZERQLEV:L IN: FEMPTIFS ALL YARIABLES OF FOR#NM ?LEVEL ()"

@ IF EMETYP THING SENTENCE “LEVEL" :M: STOP
28 MAKE SEXTENCE "LEVEL" $N: LEMPTY!:

38 $ZEROLEV:-L ((Ni+1)

END

Report No. 2625 Bolt Beranck and Newman Inc,

{36])

TO $MAKELEY.L :LEVSL NUN: $PIVOT§ :LIST: ;CREATES LEVEL LISTS FOR SMAKEL
o **EVELS)

@ IF EMPTYP? $(LIST! STOP

20 MAKZ "LIST™ SENIENCE (SNEARESTHOLE ¢ THING SENTENCE "LEVEL" !LEVEL N
«xU{4: PXVOLY) tLIST!

30 MAKE SENLJENCE "LEVEL"™ JLEVEL NUKHS SENUENCE SENTENCE SENVENCE THING SE
««TENCE "LEVEL" $LEVEL NUUY (FIRST
«* 1LIST:) o W2 $NOTE FIRST BUTFIRS
«*T $LIST: (FIRST :LISTY) + 42

4@ SMAKELEVY:.L (!LEVEL NUM:+1) FIRST $LIST: THLNG SENTENCE "GRAPHT" FIR
«*ST BUTPFIRST 1L1IST:

50 SMAKELE =L $LEVEL NUM: :PIVOT: BUTFIRST BUTFLRST LIST!

END

[37)

TO SNEARESTHOLS iX! :LIST: {PIVOTy JUSED 8Y SMAKELEVEL TO FIND GAPS BETH
+*EEN BOXES ALRZADY DEFINED, ON :LIS
«*T3, PIVOT IS CENTER)
i@ IF EMPTYP ILIST: OUTPUT { (PIVOT!.20)
20 TLST WOT BANSIDEP (tPLVOTI+3Xield2) (IPIVOLI+IX$+42) $LIST!
30 IFTRUZ OUTPUT ;PIVOT:+3X: ‘
4B TeST NOT FINSINEP ($PIVOTI-3Xiel2) (IPIVOUIGSXt+U2) $LISTH
- 5@ IFTRUEZ OUTPUT §PIVOT:.:X! '

6@ OUTPUT BSNSARESTHOLE $X!+7 (LISTI) I1PIVOT:
END

[38]
TO SINSIDEP :A: B! I{LIST{ JUSED BY SNEARESTHOLE TO CHECK OVERLAP;

@ IF EMPTYP ILIST} OUTPUT "FALSL"

28 IF EITHER.SBETWEENP :At IB! FIRST ILISU: SBETWEENP :A? 181 FIRST BUTF
) ; «+IRST BUTFIRST 1LIST! QUTPUT “TRUE"

30 DUTPUT $INSIDEP iA: $B! BUTFIRST BUTFIRST BUYFIRST :LIST:

END : S

[39]
TO S$BESTWBENP IA: 1B: $TEST: ;IS :TEST: BETWEEN :A: AND {B17J
§ IF EITHER IS ;A; ;TEST, IS B, ;TEST, OUTPUI "TRU:"
'@ OUTPUT ELTHER BOTH GREATERP $A! :TEST: GREATHRP ITEST: B! BOTH GREAT
«*ERP iBi JLUEST{ GREATERP ITEST: :A:

END

Report No. 2625 Bolt Beranck and Newman Inc,

[40]

TO SDRAWLEV.L IN: tLXST: 3VERT! ,DOLS POSITIONAL COMPUTATION AND ACTUAL
y *+DRAWNING OF BOXES ON EACH LZVEL OF
++DISPLAY;
@ IF FMPTYP THING SENTENCH "LEVEL" 3:N{ S10P

20 TxST BHE.YY ILIST:

30 IFTRUE BDRAALEVEL tNi+1 THING SENTENCE "LEVEL" (tN:+%)} $VERTS ~ (%
**MAXHEIGHT THING SENTENCE "LEVEL"™
«xlll) ~ 4P

43 IFTRUS .wO0P

5@ $BOXIN FLRST BUTFIRST $LI3T: (FIRST :tLIST:)} + 12 :VERT!

55 MAKE "DISPLAY LIST" SENTENCES $DISPLAY LISYT! (FIRST BUTKFIRST (LIST:
*#x) NI (FIRST ILIST!) + 42 :VERT:
v+ (FIRST :LIST!) + 42 IVERT: - K
**BEIGHT F1RST BUTFIRST $LIST!

68 $DRAWLEV. tN: BUTFIRST BUTFIRST BUTFIRST :(LIST: $VERT!
ENRD
S
[41] =-»e--'?;'“"‘?' ‘
TO IMAXHELGHT !LISY: ;CONPUTES MAXINUN HELGHT OF THE BOXES GIVEN 8Y LIS
¥«T¢,;

5 IF EMPTYP :LIST: OUTPUT 2

i@ OUTPUT HUAXINUM (SHEIGHT FIRST BUTFIRST :LIST}!) SMAXHEIGHT BUTFIRST
: **BUYTFIRST BUTFIRST t4LISTH

END

(42]

T0 $HEIGHT :SWRING: ;COMPUFES HEIGHT OF wEXT GIVEN 8 CHARACYER WIDTH;
.8 OUTPUYT 2 » (((COUNT iSTRING!) ¢ 7) / 8) = 5
END

"[43)

TO $BOXIN iNAME; {UPPERLHX: tUPPERLHY: ;BUXES IN INAME: GIVEN COORDS UF
- _ «+*UPPER LEFY HAND CORNER}

B MOVE SENVEZINCE $UPPERLEA:~3 JUPPERLHY:+J

20 PUNDOWN :

33 MOVE SENYENCE jUPPERLMX:+63 (UPPERLHY:+3

4@ MOVE SENYENCE $UPPERLHX:+63 $UPPERLHY: - (SHELGHT :NAME!) ~ 9

58 HOVE SENYEZNCE JUPPERLHX:~3 (UPPERLHY: ~» (SHEIGHT (NAME:) - O

60 MOVE szu‘ulcs 1UPPERLHX!»3 SUPPERLHYI+3) . _
"0 $ENCLOSENES :NAMRE: (UPPERLHX:+U4 IUPPRRLHY:-9

80 PINUP

2-28

Report No. 2625 Bolt Beranek and Newman Inc,

[44]
IO $.NCLOSEMSZS :NAME: iX: :Y! ;PUTS HESSAGE IN BOX}
@ TLST GLLATERP 8 COUNT iNAMEj
3 IFIRUL $CEZHTER tNAME: fX: Y3
6 IFTRUZ .10P .
23 MUSSAGE SHENTEUCE :1X: 3Y¥: $PULL 8 :INAMER
3@ $LNCLOSEALS $DELETE, 8 :NAMEY §X: 1Yi~12
END
[45]

JTO BCENTER INAHED X! 31Y: 3USED BY $LNCLOSEMES 1Q CENTER TEXT}
. IF EMPTYP INAME! STOP

20 MESSAGE SENTENCE SUM $X: (7 + (6 = COUNT INAMEY)) / ¢ 1Y¥Y3 $NAME:
END

[46]
TO $JOINLEV#LS :LIST: ;JOINS DISPLAYED BOXES, XLYERATES THROVGH LEVELS;
@ YF ENPTYP !LIST: S%OP
20 PJOINLIN.S FIRST :LISYT! THING SENTZNCE "GRAPH" FIRST {LIST:
380 $JOINLEV.LS BULFIRST (LIST: :
END
[47]

70 _$JOINLINX:S INAM: :LIST! jDAAWS CONNECTIONS BLTWELN BOXES, 1TERATES TH
«*ROUUH ELEMENTS;

1@ IF EMPTYP (LIST: STOP

200 $SJOIN $HAM? FIRST $LIST:

30 BJOINLIUV.S NAM! BUTFIRST JLIST:
END

[48] .
TO $JOIN :A: :3:

e s

;
i IF XIS (ki B ST

CONNECTS BOX th$ AHND BOX :B: WITH ARC OR ARROW}
op
3 MAKE "p" $COORD g
:B
A
FI

¢ tDISPLAY LIST:

! ¢DISPLAY LIST:
IRST :BS

T tA: BUTFIRST !B}

& MAKE “B" $CUORD
'§ T2ST IS FIRST
20 IFTEUE 3AQC BU
38 IFTRUL .i0QP

up $JOINLINL $A: :B:
END

>3 oo
%3
wm

2-29

Report No, 2625 Bolt Beranck and Newman Inc,

(49)

TO SJOINLIN: $A: $B; ;JOINS BOX $At AND BOX $B: WITH ARROWJ
'@ T2ST LE SP FIRSY 1A: FIRST :H:
20 IFTRUE SORAWLINE BUTFIRST BUTFIRST BUTFIRST tA3 SENTENCE FIRST BUTFIR

«*ST B! FIRST BUTFIRST BUTFIRST :B:
38 IFTRUS .wOP

4@ $DRAWLIN. SSNIENCE FIRST BUTFIRST th: FIRST BUTFIRST BUITFIRST §A: BUT

«+FIRST BUTFIRST BUTFIRST :R1
END

(50]
TO $EZRASEALL ;PSEUDO ERASE ALL TO PRESERVE SYSTEMN;

i@ SERASEALLY SENTLNCES $UPTOLINE (FINAL CONTENLS!
END) ’

{51]

TO $XRASEALLY :PRSt jUSED BY SERASEALL;
5 IF LMPIYP :PRS: STOP

i@ DO SENTENCK “ERASE" FIRST IPRS}

20 SERASEALLT BUTFXKST :PRSS

END

UTILITY PROCEDURES

IO SYESP LALSI ;5

@ IF IS $ANS: "¥Y" OoUTPUT “TRUE"
20 IF IS IANS: "YLS" OUTPUT "“TRUEY
30 OUTPUY “"FALSE"

END

0 $3KIP NG
5 IF ZEROP $N: STOP
'@ PRINT "
20 $SKIP DIFFERENCE $N: 1
END

TO $DISP INO: JPRINTS DRIEBLE LINE 1KO!j

:@ PRINT SENTENCES "##e¢" HO! “#s&" THING SENTENCE INO: "N
END '

s
S

TO $3DD IPLACE! IMES: ;CONCATENATES VALUE OF PLACEY AND $MESS;
0 NAKE (PLACE! SENTENCE THING :PLACE: :MES: ‘
END -

Report No. 2625 Bolt Beranek and Newman Inc,

TO $COUNTT EL: ;COUNT WITH KLUDGY FIX OF BUG XN COUNT ©3;
@ IF EMPTYP (EL! OUTPUT & ELSE OUTPUT COUNT IEL}
END

TO $PULL iN: (LIST: ;PIRST :
‘@ IF ZERCP N! OUTPUT :(EWPTY
20 OUTPUT WORD FIRST (LIST: ¢
END

N¢ OF 1LIST:,;

PULL $Wi-1 BUTFIRSY JLIST:

TO_SDELETE, iN! ILIST! ;BUYFIRST tN: OF :LIST:;

@ YF (N3=. OUTPUT :LIST:
20 QUTPUT $DELERTEL, 18i-1 BUTFIKSY SLIST:

END
TO_$MP $BL: 3LESIS ;li.aBubp;
5 MAKE "LL <" SEUTENCES $LisTs

8 IF EMPLTYP ILIST: QUTPUT "FalsSHEY
20 IF IS I1EL: FIRST :LIST! QUTLUT “TRUE"
39 OUTPUT 3MP (EL:! BUTFIRST :LIST:

END

=N ‘»tQ
TO _$MINUS :X: \ ;
@ IF IS FIRSY At "a" OUTPUT BUTFTRST :X1! G
26 OUTPUT WORD "o" 2X: ' :
END

TO_JPCOORD :PNAME; :LIST: ;FIND COORDINATES OF $PNANES: OK LIST OF QUINTU
+*PLES; '

28 IF IS $HOTE (PNHAME: FIRST ILIST: GUTPUT $Fb5 BUTYIRST LIST:

30 OUTPUT BCOURD iPNaAMZ: BUTFIRST RUTFIRSY BUIFLRST BUTFIKSYT BUTFIRST BU
«+TFIRST :L1ST:

END

TO S$F5 b '

+@ OUTPUYT i NTENCTEY SENTENCL SENTENCE SDNTEINCE FLRST tN: FIRST BUTFIKST :
«¥l: FiRST BUTFIRST BUTFIRST :N: FIR
«*xST BULFARST BUTFIRST BUTFIRST :N:
++FIRST BUTEFIRST HBUIFLRST BUTFPIRST B
wrUTEFLRST N}

(%4
£

END

Report No. 20625 Bolt Beranek and Newman Inc.

IO $ARC A B! ;DRAWS AKC FROM FOINT $At TO HORXZONTAL PUINT :ipij

@ PSENICIRCLE SENTENCE FIRST $A! FIRST HUTFIRSY $At QUOTLENT ({ FIRST
e*{B:) - FIRST gA:) 2

20 PAHDOWN

38 LESFT 1B

49 BACK 1b

5@ FRONT 15

60 RIGHT 2.

70 BACK 15

80 PLNUP

70 $SEMICIRCLE PT: :RADIUS:

1@ MoVvE Pl

'S SUTHEADING 92

20 PEONDOUWN

30 S$REPEAT 13 SENTENCE "FRONT" 1£ % $ABS !RADIUS?!/38 SENTENCE "“RIGHT" (
«*$SGN $RADIUS:) & 1b

4@ pZNUP

TO FREPEAT N
'@ IF ZERCP 3
20 DO A:

38 DO B!

4p SREPEAT (tNi!e1) :As B
END .

10 $iBS iX: s
P TZST IS FIRST 1X: ".*

20 IFIRUE OUTPUT BUTFIRST :X:

39 oUTPUT :ixX:

END

TO $SGN it

i@ IF IS FIXST A3 "." OUTRPUT - 1
20 OUTPUT

END

TO SUNTON :LISTOND: SLISTTWO:
3 HAKE "LI.YONEZ" SENTENCES :(LISTONE:
6 MAKE "LI.tTWO"” SENTENC:S $LISTIHO:
@ IF EMPTYP (LISTONE: OUTPUT ;;LISTTWO!
20 IF $MP FIRSI ILISTONE: :LISTTWO: OUTPUT $UNION BUTFIRST (LISTONE: :LIX
**+STIHWO}
SSDOUTPUT PUNION BUTFIRST sLISTONE: SENTENCE FIKST JLISTONES $LISTTKO:

Report No. 2625

SDRAWLIN tat 3By
2 MOVE A

PoNDOWN

MOVE 18:

LaFYl 1w

% BiCK 1b

FRONT 15

RIGHT 2:

BACK 15

PLHUP

JDRAWS ARROW FROM POLNT IA: TO POINT 1!83;

IO SREMOVE ¢BLY 1LIST: ;STRIPS FRONT OF iLIST:
0 MAKE "LIbT“ SENTEZNCES $LIST: "
20 IF IS 'EL: FIKST :LIST: OUTPUT
38 OUTPUT S$REMOVE ;EL¢ BUTFIRST

END

BUTFIRSY
tLIST:

tLISY

TO_$DELETE :EL
20°IF 15 iuL:
N

30 oUTPUT .

¢ SLIST: PAIRWISE DELETE;

FIRST BUYFIRST I1LIST: OUTPUYT BUTFLRST BUTFIKSY
vEENCES FIRST tLIST: FYRST BUTFIRST tLIST:
«*JRST BUTFLRST

$DELETE
{LIST;
END . !

TO_SDESCE IDESCR: :LINE NO: ;IS DESCRIPTOK :DESCR: IN COMMENT OF

«*x031? (IE IN "(LIﬂE NC) B");

ég OUTPUT $MP :DESCR: THING SENTENCE iLINE XO: “p¥

D .

zg"§gggﬂ,n.$§g tHUM: jHAS DRIBBLE LINE $NUM: PAKSED CORRECTLY?;
@ OUTPUT ENFUYP THING SENTEKCE :NUM; "D"

END

TO_$:0F jAT END OF DRIBBLE FILE?;

@ TEST EMPYYP THING SENTERCE
IFTRUE PRTHUT
IFTRUE OUTPRUT
ouTPUT "FALSE"

$DRIBBLE NOY{ "N*
“exv s ENDeOFrFILEswn 4"

"TRUE"

2-33

Bolt Beranek and Newman Inc.

UP TO AND INCLUDING :EL:;

‘{LIST:
{EL?

BUTF

SLINE N

Report No. 20625 Bolt Beranek and Newman Inc.

USER-DEFINABLE PROCEDURIS

TO $LOOKAHEAD }DEFINEV IN EXAMPLY TO PERMIT LUOKAHEAD IN DRLBBLE FILE AN
++D MARKING OF IGNORABLE LINES;

@ SLOOKANEAD1 1
END

TO SLOOKAHEAD1T 1lit ;USED BY $LOOKAHEARD,;

‘@ TYPE “HORE?.,,"

28 TEST $YESP REQUEST

33 IFFALSE PRINT SENTENCES "«*RESUNE ATw#se" IDRIBBLE NO; "eesl
4 IFFALSE $SKIP 2

50 IFFALSE DO THIKG SEHTENCE $DRIBBLE NO: “H"
68 IYFALSE ST0P

70 TYPE “LLLCL"

88 $NPISP SUM :DRIBBLE KO3 “K"

90 TYPE "IGHNOKRE?,,."

@8 IF $YE.P REQUEST $ADD SENTENCE SUM $DRIBBLE NO! si: "D" "IGNORE"
1 $LOOKAHWLAD1 SUM M: 14

END

TO $NOTE $PROC! ;EMPTY,USER DEFINABLL PROCEDURE, HERE FILLED IN AS IN EX
«+AMPLE; '

'@ IF IRECURSEP !PROC! OQUTPUT WORD WORD "»s" SPHROC!: "#x"

20 OUTPUT :PRUC; '

END

. IO $RETURSLP IPROC! ;USED DEFINED IN EXAMPLE 710 CHECK RECURSIYENESS;
@ QUIPUY $11P iPROC: SRECURSIVE LIST:
END

TO $SHOWLLS.P
8 QUIPUL “FiLLSE"
END ,

TO $UICET ;;HPTY, USER DEFINABLE PROCEDURL, HERE FILLED IN AS IN EXAMPLE
*e) - 8
@ IF KNP "RECURSIVE" THING SEHTENCE IDRIBBLE NO! "B" MAKE "RECURSIVE LI
.. ++S5T" HUNIOW SCURRENT PROCEDURE: :RE
¢+«CURSIVE L1ST:

22 ouTPUT “"IRUE"
END

Report No. 2625 ‘Bolt Beranek and Newman Inc.

6. The Display Facility

To facilitate the display of program structure diagrams, a
display system was implemented on the IMLAC PDS-1 using the TMLAC
executive program. The apparently rather idiosyncratic nomencla-
ture, SETTURTLE for example, arises from the fact that we chose
our primitives to be a superset of the commands controlling our
robot "turtle". (These are described in the Appendix.)

The display screen-is considered to be 1024 by 1024 units,
with the origin in the center of the screen. The "turtle" itself
is in the shape of an isosceles triangle whose base is 8 and
altitude is 16. The sharp end of the triangle points toward the
heading of the turtle. Headings are in degrees, from the
horizontal. The position of the turtle is kept to more accuracy
internrlly than is recorded on the screen. This procedure avoids

undesirable round-off errors.

The turtle also has a "pen'" which is initially "up'., If the
pen is down, any command that changes the position of the turtle
(except for HOME and the SET commands) will draw a line from the
initial position to the final position.

The following commands change position:
FRONT, BACK, MOVE, SETXY, SETX, SETY, HOME, SETTURTLE.

The following commands change heading:
RIGHT, LEFT, SETHEADING, SETTURTLE.

The following function gives information about the turtle
status:
HERE.

.

Report No. 2625 Bolt Beranek and Newman Inc.

6.1 Description of Commands and Functions

FRONT takes one argument: a numerical string. It moves the turtle
forward by the number of units indicated, in the direction
the "turtle" is pointed. If the "pen'" is "down", it draws a

line between the initial and final positions.
BACK :X: is the equivalent of FRONT (-:X:).

LEFT takes one argument: a numerical string. It changes the

' heading angle of the turtle by adding its argument to the
current heading and reducing modulo 360. The orientation of
the '"turtle" (i.e., the vertex of the triangle) is changed
t¢ the new heading.

RIGHT :X: is equivalent to LEFT (-:X:).
SETHEADING takes one argument: a numerical string. It-changes
~ the heading of the turtle (as in LEFT) to the argument
reduced modulo 360, and changes the orientation appropriately.
SETX takes one argument:\ a numerical string. It changes the
X-coordinate of the turtle to the argument. The orientation
of the turtle is not changed, and no vector is drawn.
SETY behaves like SETX, except that the Y-coordinate is involved.
SETXY takes one argument: a sentence having two numerical words.

It changes the X- and Y-coordinates respectively to the
first and second words, as in SETX.

2-36

Report No. 2625 Bolt Beranek and Newman Inc.

SETTURTLE takes one argument: a sentence having two three-digit
words. It changes the (X,Y) coordinates of the turtle as
in SETXY, using the first two words, and the heading as in
SETHEADING using the third word.

HOME is the same as SETTURTLE "g ¢ p".

WIPE erases all lines drawn on the display and all messages (sece
below) but leaves the turtle in the same position and

orientation as it was before the command was executed.

PENUP ''raises the pen'". It causes no command to draw a vector
until a PENDOWN command is executed.

PENDOWN "lowers the pen'". It causes the commands FRONT, BACK,
and MOVE to draw vectors from the initial to final positions
of the turtle, until a PENUP command is executed.

MOVE takes one argument in identical format and meaning as SETXY.
It causes the same action as SETXY. In addifion, it changes
the orientation of the turtle to point in the direction of

motion, and draws a line if the 'pen is down".

MESSAGE takes two inputs: the first is a sentence as in SETXY,
indicating a position; the second is a sentence or word
which is interpreted as a string. The characters in the

second argument are displayed horizontally,

HERE has no arguments. It is a function which has a value equal

' to a sentence of three words. The first two words represcnt
the (X, Y) coordinates of the turtle, and the third word
represents the heading of the turtle. IJIn other words,.the
output of HERE is in the same format as the input to SETTURTLE.

”

Report No. 2625 Bolt Beranek and Newman Inc,

6.2 Spccific Implementation on the IMLAC

The IMLAC contains a central processor (similar to a DIC PDP-9)
and a display processor {(with long vector drawing) as well as 8K
{(of 16-bit words) of memory. The display processor periodically
(60 times per second) refreshes the display by executing a sequence
of vector drawing commands.

The TENEX-IMLAC implementation operates by directly modify-
ing the display program inside the IMLAC.

For other types of display processors, such as storage tubes,
or the PLATO terminal or refresh scopes without a central
processor, a different strategy must be used. For the first two
alternatives, display lists need not be kept. As vectors are
generated, the properly formatted display instru¢tions are merely
transmitted t.. the scope. For a storage tube wiéhout selective
erase, such as a COMPUTEK, a change should probably be made to
the '"turtle indicator'", i.e., the small triangle indicating
position and bearing of the turtle., If there is a turtle indica-
tor, there would be '"tracks" left on the display, that is,
images of old turtle indicators. The procedure in this case
would be either to eliminate the turtle indication altogether or
to use a programable cursor to indicate position only. If the

"storage tube has selective erase, then a turtle indicator can
still be drawn, but must be "remembered" in order to erase
previous indications.

A refresh tube without memory can be handled in much the
same way as the IMLAC, except that the display lists should be

kept inside the main computer.

Report No. 2625 Bolt Beranek and Newman Inc.

* There are some display processors, such as other models of

the IMLAC, which do not have "long vector'" drawing hardware.

More precisecly, this means that vectors of arbitrary length
cannot be drawn with one display processor instruction. When
using a processor lacking this capability, additional programs
must be written. These programs will convert a vector specifica-
tion into a series of instructions for the display processors.,
Usuallyv the basic display instruction will be able to draw 'short
vectors" - vectors whose length is less than 3 or 4 units, where

the entire screen is 1024 units wide.

The IMLAC driving programs used in this project were written
by Victor S. Miller in MACRO, the assembly language of the
PDP-10. The IMLAC programs themselves were also written on the
PDP-10 using an in-house IMLAC assembler.

Report No, 2625 Bolt Beranek and Newman Inc,

Part 3.

Analysis Package

Report No. 2625 Bolt Eeranek and Newman Inc.

1. Introduction to Analysis Package

The analysis facilities described in the user's guide are
very general and are not customized. We describe here the con-
struction of extended facilities for use in various aspects of
the analysis -1 working with student programs directly, augmenting

the system's parsing capabilities, and extending the system's run-

time capabilities. These facilities constitute our analysis
package.

At the outset a teacher or rescarcher will find the capabil-
ities of the dribble file analysis system very substantial. The
initial command structure and associated semantics will probably
seem reasonable and adequate. Continuing use of the system,
particularly when the use is intense, will likely lead to some
dissatisfaction, both with the command structure and its inter-.
pretation. The serious user will want to personalize and extend
the specific information that the parser generates. He will want
to incorporate his own ideas on editing, error correction, and
execution facilities, It is precisely for this géason that the
system was written in LOGO, a relatively simple and accessible,
yet powerful and easily extensible language. In this section we

will discuss possible user extensions of various kinds.

2. User Dgﬁiniﬁ{gn of Analysis Procedures

We first discuss those "advanced" features of LOGO which,
although originally added for work with sophisticated students,
are very valuable in extending the dribble file system. There is
no distinction in LOGO as there is in some programming languages
between system and nonsystem commands. Thus, as a trivial example,

we can erase a sct of LOGO procedures in two different ways. We

Report No. 2625 | Bolt Beranck and Newman Inc.
: >

can use the LOGO LRASE command dircctly or we can write our own

procedure for erasing a list of procedures given as input:

TO ERASEMANY :LIST:

19 IT EMPTYP :LIST: THEN STOP

29 DO SENTENCE "ERASE" FIRST OF :LIST:
39 ERASEMANY BUTFIRST OF :LIST:

END

Also, instcad of defining a new LOGO procedure in the usual way,

we can define a procedure which creates a new procedure:

TO CREATE

19 DO "TO FOO"

29 DO "1p PRINT RANDOM"
39 DO "END"

END

CREATE defines the procedure FOO which simply has the effect

of printing a random digit. The process is carried out as follows.

+CREATE
FOO DEFINED
«LIST FOO

TO F0O
19 PRINT RANDOM
END

«F00

7

«F00 :
2 =

<

The single-input DO command evaluates its input, i.e.,
executes its input as a LOGO instruction line. The use of DO is,

of course, essential in examples like the above where we modify

*,

Report No. 2625 Bolt Beranek and Newman Inc.

existing LOGO procedurcs or define new ones. In order to ce¢ffec-
tively modify procedures, howevew, we also nced to have program
access to their current state. The LOGO built-in operations

LINES and TEXT make this possible. LINES takes one input, which
must be the name of a procedure in the user's workspace, and out-
puts a sentence composed of the line numbers of that procedure,
Using LINES with the procedurec CREATE, defined above, for example,
we get:

<PRINT LINES "“CREATE"
Bp 1p 29 3p
<

(Note the 1ine number § which represents the title line.) Given

a procedure name and a line number, one can get the entire content
of the line (including the line number) using the two-input LOGO
operation TEXT. Thus:

«PRINT TEXT "CREATE" 1p
19 DO "TO FOO"

«PRINT TEXT "CREATE" P
TO CREATE

<

As we will see in the following pages, DO, LINES, and TEXT,
- combined with the other LOGO primitives, give a user cdnsiderable
power for extension of the dribble file analysis system.. We
begin with some simple procedures to augment the basic parsing

capabilities built into the analysis system.

Report No. 2625 Bolt Beranek and Newman Inc.

3. User Augmentation of the Parsing Procedures

The built-in parsing procedures interpret the student's LOGO
program in very much the way that LOGO itself does. From the
standpoint of the analyst, however, this process can be improved
in various ways so as to run more smoothly or to give him addi-
tional information for later phases of the analysis. Examples of
each kind are developed next. |

3.1 Putting parenthesis-checking into the parsing procedure

In the current implementation of LOGO, balancing of paren-
theses is not checked as the expression is interpreted. The
execution of an unbalanced expression generates an error tuomment
and halts the system. Such halts can be annoying when the user
of the analysis system is not intercsted at the level of detail
of local syntax errors. A suitable comment entered in the dribble
file during the parsing phase can be used to inhibit execution of
such lines as the user sweeps through the dribble file subsequent-
ly. Consistent with our general conventions of ﬁsage, such a
comment is entered into the global variable "(dribble file line
no.) B". This is done using the existing one-input procedure
$ADDSYSC :MESSAGE:, together with filling in the empty procedures
designed to make such additions easy. Thus, we use the global
" "PAR COUNT" to keep track of depth (its name_fé a sentence as we
require by convention for all dribble file analysis globals).
"CURRENT LINEY contains what is left of the line being parsed.

We initialize -

TO $EXAMINELINE
18 MAKE "PAR COUNT" 9
END

3-4

Repoxt No., 2625 Bolt Beranok and Newman Inc.

We look at each eclement to sce if it is a right or left
parenthesis and, if so, take suitable action:

TO $EXAMINEEL
19 TEST IS FIRST :CURRENT LINE: ' ("
2P IFTRULE MAKE "PAR COUNT'" SUM OF
:PAR COUNT: AND 1
39 IFTRUE STOP
49 TEST IS FIRST :CURRENT LINE: ")
5§ IFTRUE MAKE "PAR COUNT" DIFF OF :PAR COUNT: AND 1
6p IF GREATERP P :PAR COUNT: :
$ADDSYSC '"MATCHING-PARENS"
END

And, finally, to terminate the 1line being parsed we fill in
$ENDLINE,

TO $ENDLINE
19 IF NOT ZEROP :PAR COUNT:
$ADDSYSC WORDS

"MISSING-" :PAR COUNT: "-PARENS"
END '

3.2 (Checking for operation vs. command

It is very useful for later analysis, and in fact very easy
during the parsing phase, to generate the specification of
whether a procedure is an operation or a command -- whether it
merely stops or hands back information to the procedure which
called it. We can look for a STOP or an OUTPUT in _he procedure
definition. If neither exists, the procedure terminates on the
END command and is a command. This, of course, is not a perfect
algorithm, even within the limits imposed by the halting problem.
The simplest form of (syntactic) ambiguity is between OUTPUTting
and falling through to the END. Also, consideruble benefit could
be derived by tracing out GOTOLINE statecments (except when their

3-5

Report No. 2625 Bolt Beranek and Newman Inc.

arguments are generated at runtime). But, the simplest approach
yields generally satisfactory results for the parsing phasc of
analysis; More complex analyses are best left for the running
phase of dribble file analysis. So, given the type of information
we want to find, where should we put it once we find it? Remember-
ing that the form of a procedure is time-dependent, it seems
necessary to maintain a running record of the state of the
procedure. We define a new. data type “(pname) FORM" to contain
such information for each brocedure defined in the dribble file.

At the ond of parsing, it might look 1like

"FOO FORM" IS "137 1§ OUTPUT 138 2§ STOP 139 1§ ERASE"

The value of "FOO FORM" is a set of triples - the dribble
file line number, procedure line number, and the relevant command
contained. This will enable the use of a new procedure in the
running phase to determine the state of any procedure at any
point in the dribble file. It is easy to incorporate in the
parser procedures which generate these names and values. We neced
simply define versions of $EXAMINEEL, $EXAMINELINE, and $ENDLINE
for this purpose as follows -

TO0 $EXAMINEEL

1p 1IF EMPTYP :CURRENT PROC: STOP

26 IF EMPTYP :LINE NO: STOP \

30 IF NOT EITHER IS FIRST :CURRENT LINE: “"OUTPUT"

IS FIRST :CURRENT LINE: "STOP"
STOP

49 $ADD "CURRENT FORM" SENTENCES
:DRIBBLE NO:
: LINE NO:
FIRST :CURRENT LINE:
END

wiaere we are using :LINE NO: to keep the line number (if any)
of the procedure line currently being defined in the dribble file.

3-6

Report No. 2625 Bolt Beranek and Newman Inc,

To do this we fill in the definition of $EXAMINELINE.

TO $EXAMINELINE
19 IF NUMBERP FIRST :CURRENT LINE:

MAKE "LINE NO" FIRST :CURRENT LINE:
END

The reason, of course, that we have been maintaining the
additions to the form statement of FOO separate in."CURRENT FORM"
is that we must wait to see if the line parses correctly. If it
does not, this new information is simply discarded. We note
that $GOODPARSEP is available to do this.

TO $ENDLINE
19 IF BOTH $GOODPARSEP :DRIBBLE NO:
NOT EMPTYP :CURRENT PROC:
$ADD SENTENCE :CURRENT PROC:
""FORM"
: CURRENT FORM:
2) MAKE "CURRENT FORM" :EMPTY:
END

As a further extension of this special checking facility,
we must include the effects of student erasec commands contained
in the dribble file. If a line or the whole procedure are erased,
this occurrence must be indicated by incorporating a comment so
signifying. It is easy to incorporate a check for such
erasures which includes appropriate additions to the variables
""FOO FORM". This can be done either from scratch or by using
results from $PARSEERASE, the top-level parsing procedure
concerned explicitly with the ERASE command. These procedures
are as straightforward as the ones just developed for checking
for operation vs. command. Their implementation is left to
the reader.

3-7

Report No. 2625 Bolt Beranck and Newman Inc,

4. Aids for Execution and Debugging of Student Procecdures

In addition to the parsing phase procedures, the analysis
package includes aids for running and testing the student's

proccedures. These arc described in the following sections.

4.1 Adding Breakpoints

Insertion of breakpoints into defective, or possibly defec-
tive, procecdures is a time honored debugging device. The BREAK-
GO-CANCEL commands in LOGO give a limited amount of breakpoint
control, but, as we will see, they can easily be extended by
uscr-defined procedures to provide fairly general and powerful
debugging aids. Thesc insertions can be done "by hand' via
inscrtion of suitable code, or automatically via system calis.
The former is good for occasional use}; if the dribble file user
inserts breakpoints frequently, he may want to write assisting
procedures., In particular, cataloging of breakpoints is usecful
as well as checks to make sure the breakpoint insertion is not
destroying anything., A simple way to put in a breakpoint is by
just putting in the procedure - BP (pname) $ (line no).*

The list of extant breakpoints can be kept in "BREAK POINTS",
say, as the pairs (pnamc) (line no). So, we can write the simple
elicitation dialogue

TO $INSBREAK
19 $INSBREAK1 $ACCEPTLINE $ACCEPTPNAME
END

TO $ACCEPTPNAME (finds out pname)
- 1@ TYPE "INTO PNAME..."
- 2P OUTPUT $ACCEPTPNAMELl REQUEST

END

* . .
The name BP (pname) $ (line no) is chosen to cnsure uniqueness.

Report No. 2625 Bolt Beranek and Nowman Inc.

TO $ACCEPTPNAMELl :PNAME: ~ (validates :PNAME:)
19 1F EMPTYP :PNAME: EXIT “EMPTYPNAME,
LEAVING $INSBREAK"
2p IF $MP :PNAME: :CONTENTS: OUTPUT :PNAME:
3p PRINT ""NO SUCH PROCEDURE"
4p OUTPUT $ACCEPTPNAME! REQUEST
END

TO $ACCEPTLINE :PNAME: (elicits line number)
19 TYPR "LINE NO...'" .

2p OUTPUT SENTENCE :PNAME: AND $ACCEPTLINE1 REQUEST

END

TO $ACCEPTLINEl :LINE NO: (checks on line number)
19 IF EMPTYP :LINE NO: EXIT "EMPTY LINE NO, LEAVING
$INSBREAK"

29 TEST LESSP :LINE NO: 1

3p IFTRUE PRINT "LINE NO MUST BE GREATER THAN p"

49 IFTRUE OUTPUT $ACCEPTLINE1l REQUEST

5fp IF NOT $MP :LINE NO: LINES :PNAME: OUTPUT :LINE NO:
69 PRINT "ALREADY OCCUPIED, WANT TO CLOBBER IT?"

79 IF $YESP REQUEST OUTPUT :LINE NO:

89 DO SENTENCE "LIST" :PNAME:

9p OUTPUT $ACCEPTLINE REQUEST

TO $YESP :L:

1p IF $MP :L: "YES Y OK' OUTPUT "TRUE"
2p IF $MP :L: "NO N NAH" OUTPUT "FALSE"
3P PRINT "“YES OR NO?"

49 OUTPUT $YESP REQUEST

END

The program now has a procedure name and line number, which
have been pretty carefully checked out, and is ready to start
work via $INSBREAK1. We assume there are just two kinds of
breaks, one after a specified number of times thrbugh the break-

point, the other a conditional expression evaluating to "TRUE",

3-9

Report No. 2625 Bolt Beranck and Newman Inc.

S,

TO $INSBREAK! :PROC LINE: (inserts breakpoint)
19 DO SENTENCE "EDIT" FIRST (opens proccdure for
:PROC LINE: insertion of breakpoint)

2P $INSBREAK2 LAST :PROC LINE:
WORDS "BP'" FIRST :PROC LINE: "§"
LAST :PROC LINE: .
END

TO $INSBREAK2 :LINE: :PNAME:

19 DO SENTENCE :LINE: :PNAME: (putting in the
2p DO "END" breakpoint)

39 DO SENTENCE "TO'" :PNAME:

4p PRINT '"(COUN)TER OR (COND)ITIONAL BREAKPOINT?"

50 IF IS REQUEST "COUN" $MAKECOUNTER ELSE

$MAKECONDITIONAL
6p DO "END"
790 $ENTERBREAK

END

We make a simple counter vrather than one which increments
on a condition.

TO $MAKECOUNTER

19 DO SENTENCES "1p MAKE" (We are using a unique
:QUOTE: :PNAME: :QUOTE: construction for variable
"$SUMM 1 AND :'" :PNAME: ":" name as well as procedure

name)

29 PRINT "HOW MANY TIMES THROUGI ?"
3p DO SENTENCES
"2 TEST IS :" :PNAME: ":"
$ACCEPTNUM REQUEST
4p DO SENTENCES
"53¢ IFTRUE MAKE"
1QUOTE: :PNAME: :QUOTE:
":EMPTY:" (reset counter)
5p DO SENTENCES
"4p IFTRUE PRINT'" :QUOTE:
"BREAK AT LINE'" LAST :PROC LINE:
"OF" FIRST :PROC LINE: :QUOTE:

69 DO

"SP IFTRUE BREAK"
78 DO "END"
END

3-10

Report No, 2625 Bolt Beranek and Nowman Inc,

TO $ACCEPTNUM :NUM: {elicits a number)
19 IF NUMBERP :NUM: OUTPUT :NUM:

29 PRINT "NUMBER PLEASE"

3p OUTPUT $ACCEPTNUM REQUHST

END

Now, for creation of conditional breaks.

TO $MAXECONDITIONAL
19 PRINT "CONDITION FOR BREAK..."
2p DO SENTENCES

38 IF'" REQUEST "THEN BREAK"
3p DO "END"
END

The set of procedures for creating a brecakpoint facility is
now complete. The only things remaining are the bookkeeping
procedures for Kkeeping track of the breakpoints inserted. One
of these, $ENTERBREAK is already mentioned in $INSBREAK2, It
simply enters the breakname on the list "BREAK POINTS",

TO $ENTERBREAK
1§ MAKE "BREAK POINTS" SENTENCES
:BREAK POINTS: FIRST :PROC LINE:

LAST :PROC LINE:
END

It is left to the recader to write the simple procedures

which selectively or globally list and erase breakpoints,

4.2 Running a procedure over a specified input domain

In many circumstances it is decirable to run a student's
programs in a mode different fror thecir original operation. We
next discuss sets of procedures to do this. Perhaps the very

simplest generalization of simply trying a student's program with

3-11

Report No. 2625 Bolt Beranek and Newman Inc.

a sequence of different inputs is to provide many sets of input
parameters at a time. The chief utility of this extension is
that standard sots of inputs can be developed by the user and
applied to student procedures very simply. The top-level
procedure is $RUN, which takes three inputs -- the procedure to
be exercised, the number of inputs, and the list of input sets.
$RUN uses $PULLQ to pull and quote one sct at a time and $CUT to
give the remainder of the input sect.

TO $RUN :PNAME: :# INPUTS: :INPUT LIST:

19 IF EMPTYP :INPUT LIST: STOP

2p DO SENTENCE :PNAME: $PULLQ :# INPUTS:
:INPUT LIST:

3p $RUN :PNAME: $CUT :# INPUTS: :INPUT LIST:

END

TO $PUILQ :NUM: :LIST:
19 IF EMPTYP :LIST: EXIT "“NOT ENOUGH INPUTS"
2p IF ZEROP :NUM: OUTPUT :EMPTY:
39 OUTPUT SENTENCES

:QUOTE:

FIRST :LIST:

: QUOTE:

$PULLQ (DIFF :NUM: 1) BUTFIRST :LIST:
END

TO $CUT :NUM: :LIST:

1p IF ZEROP :NUM: OUTPUT :LIST:
ELSE OUTPUT $CUT (DIFF :NUM: 1)
BUTFIRST :LIST:

END

3-12

Report No. 2625 © Bolt Beranck and Nowman Inc,

Now, to show its use,

+«TO FOO :A: :B:

€19 PRINT SUM OF :A: AND :B:
@END

FOO DEFINED

+$RUN "FOO" 2 "1 2 3456 7 8 9 10"
3

7

11
15
19

<

It is easy to write a procedure for $RUN which computes the
number of inputs of FOO, in fact, $COUNTARGS in the parsing
section is just that procedure.

4.3 Running a procedure from a specified point

Another useful facility for debugging programs, especially
those written by other people, is to run a program starting with
some arbitrary line number, This is the case, for example, when
onc is confronted with a large (bad practice, of course) program
whose initial part just generates a lot of printing. The proce-
dure $RUNFROM :PNAME: :LINE: runs :PNAME: starting at :!LINE: by
inserting a GOTOLINE :LINE: as line 1 of :PNAME:. (If line 1 is
already occupieq, $RENUMBERing, discussed in Section 4.5, is
called.) Line 2 is then defined to erase line 1, otherwise
recursions might end badly. After :PNAME: has been exccuted, the
two added lines 1, 2 are removed and the procedure is
$UNRENUMBERED, if it was $RENUMBERED earlier.

Report No. 2625 Bolt Beranek and Newman Inc.

TO SRUNFROM :PNAME: :LINE:

19 TEST $INTP "1 2" L INES :PNAME:

29 IFTRULE $RENUMBER :PNAME:

3P0 EDIT :PNAME:

49 IFTRUE DO SENTENCE "1 GOTOLINE" W :LINE: "pn
50 IFFALSE DO SENTENCE "1 GOTOLINE" :LINE:
6p DO "2 ERASE LINE 1"

79 DO "END"

89 DO :PNAME:

99 DO SENTENCE "EDIT' :PNAME:

109p ERASE LINL 1

11p ERASE LINE 2

129 DO "END"
13p IFTRUE $UNRENUMBER
END

TO $INTP :LIST 1: :;LIST 2:
19 IF EMPTYP :LIST 1: OUTPUT "FALSE"
2p IF $MP FIRST :LIST 1: :LIST 2: OUTPUT "TRUE"

2P OUTPUT $INTP BUTFIRST :LIST 1: :LIST 2:
END

4.4 Testing of procedures which use random number generation

It is sometimes very difficult to track down-bugs which turn
up in procedures which use random variables; in LOGO these involve
the built-in operation RANDOM. The bug may only exist for a very
small fraction of values of a random variable, or the manifestation
of the bug may vary widely in successive executions of the defec-
tive procedure. In using LOGO, there are several means at onecs
disposal for systematically varying RANDOM's outputs. The
simplest, yet very effective, such method is to replace (by means
of the user-defined $REPLACE, discussed in Section 4.5) cach
occurrence of RANDOM with a constant -- @ being the best choice.
The great success of this procedure is that the most common
serious misuse of random numbers is forgetting that the value P
can be assumed and therefore devising a defective end-test. By
way of trivial example:_

3-14

Report No, 2625 Bolt Beranck and Newman Inc,

TO RANDOMCHOOSE :LIST:
19 OUTPUT CHOOSE RANDOM :LIST:
END

TO CHOOSE :N: :LIST:
19 IF (EQUALP :N: 1) OUTPUT FIRST OF :LIST:

2p OUTPUT CHOOSE (:N: - 1) BUTFIRST OF :LIST:
END

If RANDOM is replaced by P above, the otherwise intermittent
bug is impaled. (Actually, it is better to $REPLACE RANDOM by
ppppy, say, which is numerically the same as P, but easier to
$UNREPLACE.)

For those very rare (yet very irritating) circumstances
where the simple substitution described above doesn't work, a more
methodical replacement of the random numbers is called for. To
be able to do this, we must be able to repeat a procedure while
systematically varying some of its internal parameters (as opposed
to specifying an input domain as we did earlier in the éimple
case $RUN). Unfortunately, this is a very hard problem. One
cannot simply systematically replace the, say 5, occurrences of
RANDOM in the user procedures by registers which are then method-
ically "stepped through"‘from $ to 9. Consider, for example, the
following (rather poor) algorithm for generating quinary sequences
of length :N: --

TO RANDOMQUINARY :N:
1p IF (EQUALP :N: $) OUTPUT :EMPTY:
2p MAKE :DIGIT: RANDOM
39 TEST GREATERP 6 :DIGIT:
49 TFTRUE OUTPUT WORD

:DIGIT:

RANDOMQUINARY (DiFF :N: 1)
SPp IFFALSE OUTPUT RANDOMQUINARY :N:
END

3-15

Report No, 2625 Bolt Bcranek and Newman Inc.

In this procedure, modified from actual studert work, the
RANDOM in line 2P is cycled through repeatedly in a single exccu-
tion of RANDOMQUINARY, and very likely even more times through
repeated calls on RANDOMQUINARY by higher level procedures,
Fufthermore, the number of times RANDOM is invoked in a single
call to RANDOMQUINARY will vary with the values it assumes, from
:N: to infinity, though, fortunatcly the probability of a given
number of invocations falls rapidly as the number exceceds :N:.

It is clear from this simple example, together with even a
slightly active imagination, that the general problem is pretty
hard. So we try a new tack concentrating on the desired product,
rather than the means. What we really want is a trace of the
values assumed by RANDOM so that we can see which ones worked and
which failed. This is easily done by replacing cach occurrence
of RANDOM with a procedure $RANDOM which, as well as printing the
value that RANDOM assumes, also prints where it is -- this posi-
tional information is taken to be the input to S$RANDOM so that a
single version of this procedure suffices for all occurrences of
RANDOM generation. |

TO $RANDOM :PNAME LINENO:

1p PRINT SENTENCE "AT" :PNAME LINENO:

2p MAKE "PNAME LINENO'" RANDOM 2
3p TYPE WORD "==>" :PNAME LINENO:

4p OUTPUT :PNAME LINENO:

END : :

In addition, each piocedure containing occurrences of the
$RANDOM procedure should be traced so that the aggregation of
the more complex random quantities these may generate are clearly
shown. To do all this we write a procedurc which sweeps through
any specified set of procedures, usually the entire :CONTENTS:,

3-16

Report No, 2625 Belt Beranck and Newman Inc,

neglocting those procedures which begin with §. (For one thing
wo don't want to debug "system" procedures; for another, embarrass-
ing things would happen -- to $RANDOM itself, for example.)

TO $BUGRANDOM :PLIST: (swoeps through :PLIST:)
19 MAKE “PLIST" SENTENCES :PLIST: (ensures that :PLIST: is a
sentence)

29 TF EMPTYP :PLIST: STOP

3p TEST IS FIRST OF FIRST
OF :PLIST: ug§vw :

49 IFFALSE $BUGRANDOM1 FIRST :PLIST:
LINES FIRST :PLIST:

59 $BUGRANDOM BUTFIRST :PLIST:

69 PRINT "FINISHED $BUGGING"

END

$ BUGRANDOM1 will search for lines containing RANDOM, 1If one
is found, it is suitably modified by $RANDOMIZE and the procedure
containing the RANDOM is traced.

TO $BUGRANDOMI1 :PNAME: :LINES:

19 IF EMPTYP :LINES: STOP

29 TEST $MP "RANDOM" TEXT :PNAME:
FIRST :LINES:

'3p IFTRUE DO SENTENCE '"TRACE" :PNAME:

4p IFTRUE $RANDOMIZE TEXT :PNAME:

FIRST :LINES:
59 $BUGRANDOM1 :PNAME: BUTFIRST :LINES:
END

- TO $RANDOMIZE :LINE:

==

19 DO SENTENCE "EDIT" :PNAME:

29 DO SENTENCE FIRST :LINE: $REP
BUTFIRST :LINE:

39 DO "END"

END

3-1%

Report No, 2625 Bolt Beranok and Newman Inc.

TO $REP :TEXT: (does the actual replacement)
19 IF EMPTYP :TEXT: OUTPUT :EMPTY:
2P TEST 1S FIRST :TEXT: "RANDOM"
39 IFFALSE OUTPUT SENTENCE FIRST :TEXT:
$REP BUTFIRST :TEXT:
49 1FTRUE OUTPUT SENTENCES
tSRANDOM"
1QUOTE: .
{PNAME
FIRST :LINE:
:QUOTE:
$REP BUTFIRST :TEXT:
END

To see how this set of five procedures works, let us try it
out on the single procedure RANDOMQUINARY, defined earlier as an
admittedly trivial example,

+$BUGRANDOM '"RANDOMQUINARY"
FINISHED $BUGGING
+<PRINT RANDOMQUINARY
RANDOMQUINARY OF 2
RANDOMQUINARY 2§ ==>
RANDOMQUINARY OF 2
RANDOMQUINARY 2§ ==>
RANDOMQUINARY OF
RANDOMQUINARY 2§ ==>
RANDOMQUINARY OF 1
RANDOMQUINARY 20 ==> p
RANDOMQUINARY OF 2
RANDOMQUINARY OUTPUTS :EMPTY:
- RANDOMQUINARY OUTPUTS ¢
RANDOMQUINARY OUTPUTS p
RANDOMQUINARY OUTPUTS pp
RANDOMQUINARY OUTPUTS @p

" e,

N

Lol 2) (=)

?»5

¥
-

A clear trace of all procedurc operations relating to RANDOM
is provided even in complex situations where several procedures
use RANDOM and interact in nontrivial fashion. The reader is left
the much casier task of $UNBUGRANDOMing, by writing the suitable

set of procedures.

3-18

4
Roport No. 2625, Bolt Beranck and Newman Inc.

~ 4.5 Editing lFacilities - renumbering procedure lines

An ability to automatically renumber the lines of a program
is a useful editing featurc of any line oriented programming
language. Although this facility is not included among the LOGO
primitives, the primitives are casily extended to perform this
function. To show the way in which editing commands can readily
be added by an experienced user, we follow the development of a
renumbering package in some detail,

When the procedure being modified is itself the object of
iﬁquiry, as is the case with dribble file analysis, it is desirable
to also have facilities to undo changes. When one writes a
procedure RENUMBER, a procedure UNRENUMBER is likely to be of
additional use. VYurthermore, a record should be automatically
generated of which procedures have been modified by RENUMBER.
Having specified his desired goals in this manner, the user now
must cast about for a renumbering scheme which is Invertible.

The usual method (as in most flavors of BASIC) in which an initial

number and step size are input parameters, requires that a separate
record be kept of the original numbering, a clumsy and inefficient

method. |

Far simplef is the multiplication of each line number by a
fixed constant. Division by that constant will then restore the
line numbering to its original state. A choice of 10 provides
adequate spacing in nearly all cases and results in a very trans-

parent recnumbering.

The careful user writing this renumbering package wcoculd also

note two further points:

Report No. 2025 Bolt Berancek and MNewman Inc.

(A) - The input of GOTOLINE must also be modjified in cach
appearance of that command. This input nced not be a number so
insertion of an explicit PRODUCT (OF) 1P (AND) must be inserted.

(B) It matters in which order the lines of a procedure are
renumbered. If one starts with the lowest number and works up,
renumbefing a given line will clobber a succeeding line if the
two are in the ratio 1:1Pp. A renumbering procedure starting with
the highest number eliminates this difficulty (vice versa for
unrenumbering).

Our hypothetical user follows the convention that "system"
procedures are preceded by § to avoid possible conflict with
procedures defined by the dribble files themselves, He might
start his procedure-writing, as is his usual style, from the top

level down or from the bottom up, let us say the top down.

TO $RENUMBER :PNAME:

1p DO SENTENCE "EDIT" :PNAME: (gets into redefinition mode)

29 DO SENTENCES
"TITLE" (adds the comment "renumbered"
BUTFIRST TEXT :PNAME: 9 to the title line of :PNAME:)
" RENUMBERED; "

39 $REN :PNAME: (renumbers each of the lines
BUTFIRST LINES :PNAME: of ¢PNAME: using--yet to be

written- -$REN)
49 DO "END"
S¢9 PRINT SENTENCE :PNAME: "RENUMBLERED" (indicates that the

renumbering is completed)
END

$REN will go through the list of line numbers, starting with
the last one, crecating a new copy of it with line number multi-
plied by ten, erase the old version and repeat with BUTLAST of
the list till it is empty.

3-20

Report No. 2625

TO $REN :PNAME: :LIST:

19 IF EMPTYP :LIST: STOP
29 DO SENTENCE OF
(WORD OF LAST :LIST: AND §)
AND $CGOTO BUTFIRST TEXT*
{PNAME: LAST :LIST:

3p DO SENTENCE
"ERASE LINE"
LAST :LIST:

4p $REN OF :PNAME: AND
BUTLAST OF :LIST:

END

Bolt Beranek and Newman Ing,

(:LIST: is the list of line
numbers to be modified)

(crecates a new line which has
line number 10 times that of
the last one on the list and
has text modificd by $CGOTO
which looks for GOTO LINES
and modifies them)

(erases the old numbered
version of the line)

(the last line number on
tLIST: is taken carc of, then
the process is repeated with
the rest of the 1list)

Now to write $CGOTO, which replaces "GOTOLINE" by "GOTOLINE
PRODUCT OF 1P AND'", we use in turn the rather straightforward and

generally useful procedurec $REPLACE.

TO $CGOTO :TEXT:

1p $REPLACE "GOTOLINE" "GOTOLINE PRODUCT OF 1§ AND"

:TEXT:
END

TO SREPLACE :A: :B: :C:

1p IF EMPTYP :C: THEN OUTPUT :EMPTY:

29 IF IS FIRST :C: :A: THEN OUTPUT
SENTENCE OF :B: AND BUTFIRST OF

39 OUTPUT $REPLACE :A: :B: BUTFIRST

END

G

:C:

Renumbering is now finished and we can create a dummy

procedurc FOO to test it out:

*Remember that TEXT :PROCEDURE NAME: :LINE NUMBER:
gives the complete line including the line number.

3-21

Report No. 2625 Bolt Beranck and Newman Inc.

+<TO FOO :N:

@1p PRINT "I AM DOING FOO"
@2P GOTOLINE :N:

@END

FOO DEFINED

+«$RENUMBER "FOO"

FOO RENUMBERED

+<LIST FOO

TO FOO :N: ;RENUMBERED;

199 PRINT "I AM DOING FOO"

2pp GOTOLINE PRODUCT OF 1@ AND :N:
END

<+

This is a littlc less than half of the goal we specified at
the outset. Next we write the "unrenumbering" procedure. It is
different from its inverse in that we check to see if the
procedure :PNAME: has been renumbered and if not we abort the
process.,

TO $UNRENUMBER :PNAME: -
19 TEST $MEMBERP " ; RENUMBERED;" (is the comment RENUMBERED on

TEXT OF :PNAME: AND ¢ the title line :PNAME:?)
29 IFFALSE PRINT SENTENCE :PNAME: (if not, print message so
"HAS NOT BEEN RENUMBERED" indicating)
3p IFFALSE STOP {and stop)
49 DO SENTENCE "EDIT" :PNAME: (get ready to edit :PNAME:)
$SPp DO SENTENCES
"TITLE"
REPLACE (remove ;RENUMBERED; from
" RENUMBERED; " the title line of :PNAME:)
1] 1" :
BUTFIRST TEXT :PNAME: §
69 $UNREN :PNAME: (unrenumber the other lines
BUTFIRST OF LINES OF :PNAME: in :PNAME:)
7¢ DO “ENDY {lcave editing mode)
89 PRINT SENTENCE :PNAME: "UNRENUMBERED"
END (print terminating message)

Report No, 2625 - Bolt Beraneck and Newman Inc,

$MEMBERP, which tests whether :;ELEMENT: is a member of :LIST:,
is rather straightforward.

TO $MEMBERP :ELEMENT: :LIST:

1 1F EMPTYP :LIST: OUTPUT "FALSE"

2 1F IS :ELEMENT: FIRST :LIST: OUTPUT 'TRUE"
3 OUTPUT $MEMBERP :ELEMENT: BUTFIRST :LIST:

$UNREN is very much 1ike its counterpart $REN, except that
before dividing a 1line number by 1f, it looks to see if the last
digit is §. If not, the line has certainly been added since
renumbering was done and is ignored.

TO $UNREN :PNAME: :LIST: (:LIST: is again the 1list of
the line numbers) ,
1p IF EMPTYP :LIST: THEN STOP (stop when :LIST: is exhausted)

2P TEST IS LAST OF FIRST OF :LIST: @ (is the last digit of the
first line number £7)
39 IFFALSE $UNREN :PNAME: (if not, go on to the next
BUTFIRST OF :LIST: line)
4p IFFALSE STOP
5p DO SENTENCE OF

BUTLAST OF FIRST OF :LIST: (divide line-number by 1§)
$UNCGOTO OF BUTFIRST OF TEXT :
¢! PNAME: (we again have to decal with
FIRST :LIST: GOTOs)
69 DO SENTENCE "ERASE LINE" (erase the un-unrenumbered
FIRST :LIST: version of the line)
79 $UNREN :PNAME: BUTFIRST :LIST: (repeat for the rest of
:LIST:)

END

$UNCGOTO is a little more complicated than $CGOTO since a
sentence rather than a word is searched for. Rather than use a

morce general $REPLACE, we write $UNCGOTO in one piece without
using $REPLACE. '

3-23

Report No. 20625 Bolt Beranck and Nowman 1lnc,

TO $UNCGOTO :TNST:

19 IF EMPTYP :TEXT: THEN OUTPUT :EMPTY:

29 TEST IS FIRST OF :TEXT: “"GOTOLINE"

3P0 IFTRUE TEST IS $FIRST4 OF BUTFIRST ($FIRSTY gives the first

¢TEXT: :LIST: four c¢lements)
"PRODUCT OI' 1p AND"

49 IFTRULE OQUTPUT ($BUTFIRSTS removes the
$BUTFIRSTS OF :TEXT: first five elements)

59 OUTPUT SENTENCE FIRST :TEXT:
$UNCGOTO OF BUTFIRST :TEXT:
END

(We note, in passing, that $FIRST4 and $BUTFIRSTS can be
better written as special cases of more general procedures
$FIRSTN "4" and $BUTFIRSTN "5'",)

Now we have written all the procedures to undo renumbering;
we test them by returning to our dummy procedure FO0O.

+$UNRENUMBER "FOO"
FOO UNRENUMBERED
<LIST FOO

TO FOO :N:

19 PRINT "I AM DOING FOO"
2P GOTOLINE :N:

END

Thus the original version of FOD is restored. This unrenumbering

process can only be done once. Repetitions will be ineffective.

«$UNRENUMBER "FOO"
FOO HAS NOT BEEN RENUMBERED

<+

The only work remaining is to obtain from the set of
procedures defined (:CONTENTS:) that subset which has been
renumbered.

3-24

Report No, 2625

TO $SCARCHREN
1p OUTPUT $SRC :CONTENTS:
END

TO0 $SRC :PLIST:

19 IF EMPTYP :PLIST: THEN OUTPUT
cEMPTY:

2p TEST MEMBERP " ;RENUMBERED;"
TEXT FIRST :PLIST: "pm

3¢ IFTRUE OUTPUT SENTENCE
FIRST :PLIST:
$SRC BUTFIRST OF :PLIST:

4p OUTPUT $SRC BUTFIRST :PLIST:

END

Bolt Beranek and Newman Inc,

(we must initialize our
scarch by specifying a 1list
of procedure names)

(tost if the first procedure
in :PLIST: has been renumbered)

(if so, include it in the
output and go on)
(if not, just go on)

And, we can even write a procedure which unrenumbers

everything,

TO $UNRENUMBERALL
19 $UNRALL $SEARCHREN
END

TO $UNRALL :LIST:

19 IF EMPTYP :LIST: THEN STOP

2p $UNRENUMBER FIRST OF :LIST:
39 $UNRALL BUTFIRST OF :LIST:

END

This is a fairly substantial,

(initialization)

sophisticated product for a
relatively small, unsophisticated amount of work,

Such a package

should be the product of no more than two hours of work by a
reasonably experienced LOGO user of average ability,.

3-2%

Report No. 262§ Bolt Boranck and Newman Inc.

4.6 TFurther examples of editing aids

In the preceding section wo developed one particular aid --
a renumbering package -- in some detail. We did so for purposes
of illustration - not all users will feel a need for such a
capability and those who do may have differing views on the form
and effects of such a package. In this section we briefly discuss
some further "stand alone'" aids which can easily be written to
augment editing capabilities. '

Modifying some or all of the procedures in one's workspace
is often usoful, as for example, when the name of a procedure is
to be consistently changed. This is easily done by using DO,
LINES, and TEXT in much the same way as in the renumbering ecxample.
The form of the top-level procedure mighi be

REPLACE (old text) (new text) (procedure list)
where the procedure list specifies those procedures in which the
substitution is to be made. (:CONTENTS: can be used to specify
all procedures.) An example of a REPLACE procedure similar to
this is developed in Appendix 1.

;

A related idca is to develop a procedure

FIND (text) (procedure list) which simply enumera%tes the
occurrences of (TEXT) in the domain specified by (procedure 1list).

Both of the above types of procedurec can be much enhanced by
the use of the set of pattern matching procedures which we have

written in L0GO.! They provide a capability much the same as that

————— -

-—

Tt :se are described in “Uses of the LOGO Programming Language in
ti.dergraduate Instruction'" Lukas, Gecorge, Proceedings National
Conference, Association for Computing Machines, 1971,

3-26

Report No. 20625 Bolt Beranek and Newman Inc.

in SNOBOL2. These pattern matching programs arc accesscd by a
top-level procedure MATCH (pattern list) (text). MATCH is a
prodicate which returns true or false as it succeeds or fails. A
pattern list is a string of variables and literal text. In the
casc of success, any variables used in specification of the

pattern are set to those values which resulted in success,

Variables are distinguished from literal text to be matched
by their first character being §. They maf be followed by a pair
of parentheses enclosing a type specification for the variable.
The types of variable currently "built-in" include

PAR must have correctly matching parentheses
NUM must be numerical

(number) must be of length (number)
The matching package also provides the user an area to insert lhis
own variable specifications.

Examples of the use of MATCH are:

<PRINT MATCH '"AB' "ABC"

FALSE

<PRINT MATCH '"A $U" "ABC"

TRUE

+«PRINT :3$U:

BC ‘
+«PRINT MATCH "$U(PAR) * $V(PAR)'" "(X+2)*{X+3)"
TRUEG

<PRINT :$U:

(X+2)

“<PRINT :$V:

(X+3)

Two notes should be made regarding the use of variables in
pattern specification. First, the use of repecated matching
occurrences of a variable in a pattern results in the requircment

that all occurrences be identical, unlike SNOBOL2. Second,

3-21

Report No. 2625 Bolt Beranek and Newman Inc,

declaration of type of variable neced only be made for one

occurrence of the variable in a pattern 1list, although the
declaration can be repeated if desired. ‘ﬁ’}'

The pattern matching capabilities can be used to advantage
in all phases of the analysis. Thus, when working directly with
the student programs, matching procedures can be used to locate
and correct bugs of specified form; for example; to replace all
occurrences of~thie form PROCEDURENAME (A,B,C) by PROCEDURENAME
(B,A,C). The entire parsing package can be managed by a pattern-
matching-based executive program, It can, for example, make the
parenthesis checking procedures more powerful by extracting the
content for further analysis., It can easily separate out .the
student comments and do specified keyword searches on them to
help guide the analyst's run time work.

4.7 Inserting Comments into the Procedure Structure Diagram

The "empty" procedure $NOTE is provided in the graphics
portion of the RUN package to enable comments to be displayed on
the procedure structure diagram along with the procedure name.
$NOTE simply gives the transformation of its input desired on the
diagram. Thus, initially $NOTE is defined:

TO $NOTE :PNAME:
-1 OUTPUT :PNAME:
END

Let us say, for example, that a predicate $RECURSEP ;PNAME:
has been defined by the user, which outputs "TRUE" or "FALSE" as
its input, :PNAME:, is or is not recursive. $NOTE can then be
used to indicate recursiveness on the procedure structure diagram
by '"starring" recursive procedures. This is done simply by the
addition of a line to its definition
S IF $RECURSEP :PNAME: OUTPUT WORDS '"*%1t :pNAME: M*#n

This facility is used in Example 4 of Part 4,

3-28

Report No, 2625 Bolt Beranck and Newnan Inc.

Part 4.

Examples of System Use

4-0

Report No. 2625 Bolt Beranok and Newman Inc.

1. Introduction

The dribble file analysié system has been described and
documented in the preceding parts of this report. In the follow-
ing pages we illustrate the use of the system in concrete appli-
cations. [Each application emphasizes a particular aspect of the
system's use. The first example shows how the standard facilities
of the system are used in routine inspection of a student's work.
It illustrates the various cbmmands for executing dribble file
lines and shows how procedures are listed and diagrammed during
‘the course of running through the dribble file. The second
example is an analytic study of a student's work during an
extensive program debugging session, It shows how the system can
provide the analyst with very specific and detailed insights
about the student's difficulties, cognitive style, and current
progress.,

The third and fourth examples illustrate features useful for
analyzing relaiively complex program structures. The particular
program structures we¢ have chosen for illustration deal with
random gencration of grammatic sentences, and automatic extrapo-
lation of number sequences. Both are straightforwardly written,
compact, and easily understood. Nevertheless, they comprise a
number of component programs, approximately 10 in each case,
interconnected at approximately four levels of depth, and some
of the programs are recursive. In the third example we illustrate
the use of the procedure diagramming facility for graphically

displaying such complex structures in a fairly transparent manner.

In the last example we illustrate the use of analyst-written
procedures to assist in characterizing complex structures of this
kind and also in actually augmenting the built-in procedure
diagramming facility to indicate which procedures are simply
recursive.

IToxt Provided by ERI

Report No. 20625 Bolt Beranck and Newman Inc.

Thoese oexamples are treatod in the next section. In ecach
case, discussions accompany the interactions made using the dribble
filo analysis system. Tho interactions were rocorded using the
photocopy device associatod with the IMLAC display scope. Those
pictures form the basis for the discussions. We have typlcally
combined two or tﬁree such scope photographs into ecach figure so
as to méke the presentations more concise.

2. 555?“U’IEL_£

The dribble files used in this example and thc¢ following one
werc generated by University of Massachusetts underpraduates in a
remedial computer mathomatics course. Both examples are drawn
from student work in geometry. The first example mainly concerns
the development of a procedure for drawing triangles. As will be
evident from looking at the student's work, he did not find this
to be a trivial task.

Figure 1 shows the Leginning of the analysis. In the first
‘line, the user starts the analysis system by typing $STARTRUN.
On line 2, the system requests the name of the drﬁbble file to be
analyzed (DRIBBLE FILE:); the user responds by typing the name
of the lesson (LESSON PARSED). Then, on line 3, he calls for
execution of the first lines of the dribble file, up to line 15,
($DOTO 15). Dribble file lines ***1*** through ***g*** arg
executed with no difficulty -- these constitute the definition
of the procedure TRIANGLE. Line ***7*** Jjowever, where the
student had called for exocution of this procedure with an input
of 3, ran into a problem, causing LOGO to stop. The diagnostic
states the student's error (MARK NEEDS A MEANING) and indicates
where the error occurred (I WAS AT LINE 1§ IN TRIANGLE). At this
point the analysis system has stoppecd and waits for the usor's
next command.

Report No. 2625 Bolt Beranok and Newman Inc,

During the course of execution of dribble file lines, the
procedure “urrently being defined, i{ any, is displayed in its
current form in half-sized text at the lower left corner of the
display. Note in Figure 1 that TRIANGLE is so displayed,

Because the small text charactoers are difficult to read on the
photocopy (though not, of course, on the face of the scope), we
have ghoqn the definition in standard size at the lower right|
corner of the figure (and we follow this convention in subsequent
figures).

In Figure 2 the user proceeds with the command $DOTO 25,
The system then executes dribble file lines ***9*** through
kX25*% ywithout being halted. (These lines define the procedures
MARK, SUPERMARK, and RECTANGLE.) At this point the user types
$WHERE and the system responds AT DRIBBLE LINE 25 WHICH IS END
and then names the procedures which have thus far been defined,
(Note that at this point, the procedure which has most currently
been defined, RECTANGLE, is shown at the lower left corner.)
The user then types the command $DOALL, which calls for the
execution of the remainder of the dribble file. '

As shown in Figure 3, the system is only able to execute
the lines up to ***Gl*** There it ran into trouble, so indicated,
(THERE ARE 1 INPUTS MISSING FOR MARK. I WAS AT LINE 1¢ IN TRIANGLE)
and stopped. At this point the user listed the student's
procedures TRIANGLE and MARK to look at their current definitions.
Next (Figure 4) he proceeds with another $DOALL. This time the

system stops with an error indication after line ***G66***,

The user proceeds in this fashion through line ***78**x*
where another error stop occurs {TRIANGLE HAS NOT BEEN COMPLETELY
DEFINED) where the student had attempted %o execute TRIANGLE.

Roport No. 20625 , Dolt Beranck and Newman Inc.

Subsequcntl? (Figure 5), following the $WHERE command, the user
calls for a diagram of the procedure STRIPE by typing $DISPLAY
"STRIPE". The procedure structure diagram for STRIPE is shown.
(As with the display of current definitions, small text is used
in these diagrams also. To aid the rcader, the names of the
procedures displayed in the boxes are typed in at the right of
the diagram.) The diagram shows that STRIPL uses SUBRECTANGLE
which, in turn, uses SUPERMARK and RECTANGLE. Also, that
SUPERMARK uses MARK and that RECTANGLE uses SUPERMARK. More

information about diagrams is given in the section discussing
Example 3,

As scen in Figure 6, the user also diagrams the procedure
TRIANGLE, which has a simple procedure structure (it uses the two
procedures NUM and MARK neither of which itself uses other .
procedures). This diagram is shown at the bottom of the figure,
After listing the procedures NUM and TRIANGLE, he calls for the
execution of the remainder of the dribble file with a $DOALL.
Completion is indicated by the system printing ****END-OF-FILE***%,
The user then types PRINT :FINAL CONTENT1S: to list the student
procedures cxtant at the end of the run.

The student work in this dribble file consisted almost
entirely in an attempt to write a good TRIANGLE procedure. e
did not succced, despite an extensive (but not insightful)
editing effort. Along the way he wrote over 20 distinct versions
of TRIANGLE. The $STEPPROCEDURE facility, in cases like this,
gives a thumbnail history of the progressive stagés in the
devealopment of a program. The analyst requests an enumeration
of all these versions by typing $STEPPROCEDURE "TRIANGLE". The
system responds (Figures 7, 8, and 9) with a listing of these
successive definitions in the order in which the student had

crcated them. In each new version, changed lines are set off
with the prefix =>,

O ‘ 4-4

Roport No. 2625 Bolt Boranck and Nowman Inc.

+$STARTRUN

DRIBBLE FILE:LESSON PARSED

«000T0 1%

¥od 4 obd 10 TRIANGLE 1 N

$4% 2 048 40 MARK " X

S48 3 ¢68 20 7 IS SUM % X " {1 N
68 4 900 30 IFT STOP

€66 S5 400 40 HARK SUM * X * |

4% 6 444 EKD

$¢¢ 7 #¢¢ TRIANGLE 3

HARK HEEDS A MEANING.
1 HAS AT LINE 10 IN TRIANGLE

.-.
1o tolomag W
MESRE N "TO TRIANGLE :N:
Btk Y 19 MARK "y

ety 2¢ TEST IS SUM "X" 1 :N:
3¢ IFTRUE STOP

49 MARK SUM “X" 1

Figure 1.

Roport No., 2625 Bolt Beranek and Newman Inc,

«4D0T0 2%

$49 9 094 TO MARK ¢« CHAR : : N

44 10 #¢¢ 10 TYPE | CHAR

#6611 o8¢ 20 YEST 1S OLFFERENCE ¢t N 3 » 3 " v (O
64 12 G0 30 1FTRUE STOP :

90 13 469 HO MARK : CHAR : OIFFERENCE + N ¢+ * ¢t *
$44 §4 ¢4 EUD

o0 15 449 TO SUPERMARK : CHAR ¢ ¢+ N ¢+ ¢ LEYT ¢ 1 M ¢
64 1G #0¢ 40 UARK : CKAR : : N :

€46 17 444 20 MARK : LET : : M 3

4% 12 444 EHD

$4¢ 19 ¥4 TC RECTANGLE : LEY ¢ : H : ¢ N1 ¢+ CHAR & 1 ¥ :
*% 20 $44 410 SUPERHARK : CHRR : ¢ ¥ : : LET ¢ : H :
$64% 21 444 20 PRINT

¥4¢ 22 444 30 TESY 1S DIFFERENCE : N : * {1 " @ *
$44 23 444 40 IFTRUE STOP

s¥¢ 24 99 50 RECYANGLE : LEY ¢ + M ¢+ ODIFFERENCE ¢+ N + “ 4 " ¢ CHAR' :
Y !
$6¢ 2% ¥4 END
+$HHERE
AT ORIDBLE LIKNE 28
HRICH IS
END
THE PROCEDURES TRIANGLE MARK SUPERMARK RECYANGLE HAVE BEEN DEFINED
«4DoALL,

10 21EtUE K8t o003y (b (V) TO RECTANGLE :LET: :M: :N: :CHAR: :Y:

§3 e, 13h 1o stHleam 1# SUPLERMARK :CHAR: :Y: :LET: :M:
It pemiEt it e ’ 1nee
h&tmﬂun Ahe DIFPLRLESS My | (O 1Ty Zﬂ PRINT
te 38 TEST 1S DIFFERENCE :N: m1mn ugn
49 1FTRUE STOP
SPp RECTANGLE :LET: :M: DIFFERENCE :N: 1"
cCHAR: :Y:
END

Figure 2.

4-6

Report No. 2625 Bolt Boranek and Nowman Inc.

€04 4G ¢¢¢ 30 OUTPUT DELETE DUTFIRST : CHAR : DIFFERENCE s+ N ¢+ * 21 *
s¢¢ 47 4e¢ END

o6y 48 00 TO STRIPE + Mt ¢t Ny ¢t Y 1 ¢+ S

o9¢ 4O d¢0 4 SUBRECTAMOLE «+ M ¢ ¢ N ¢ 1 ¥

t6d 90 404 20 SUDRELTANGLE ¢ M ¢ ¢+ N 3 OSUM ¢ Y ¢ * 8 *

4% 51 44 30 TEST IS5 SUM ¢ Y ¢ ¥ 4 * 1 §

99 52 #¢¢ 40 IFYRUE STOP

000 S 449 SO STRIPE ¢ M s ¢ N ¢ SUM ¢'Y & 8 * 1 S8

ey 54 4¥¢ EUD

v4¢ 55 ¢4 T0 MIODLE ¢t N ¢ ¢ X ¢

Y64 SG 40 10 HARK * ¥ DIFFERENCE HALF : N : HRLF COUNT : X
ted 57 6% 20 TYPE : X : '

¥4 S8 ¢¢¢ END

$¢¢ 61 #¢¢ TRIANGLE 3

THERE ARE 1 INPUTS MISSING FOR MARK,

1 HAS AT LINE 10 IN TRIANGLE

eLIST TRINNGLE

T0 TRIANGLE :N:

10 HARK “X*®

20 TEST 18 SUM “X" 1 :N:
30 LFTRUE STOP

40 HARK Sun *Xx" |

END

«LIST HARK

T0 HARK :CHAR: :N:

10 TYPE :CHAR:

20 TEST IS DIFFEREHCE :N: 1 ©
30 LFTRUE STOP

40 MARK :CHAR: OIFFERENCE :N: 1§

END
E’;E%;-’:‘E;:%M{lmmmwmm TO MIDDLE :N: :X:
) 1# MARK "" DIFFERENCE HALF :N:

HALF COUNT :X:
2§ TYPE :X: ‘
END

Figure 3.

Report No., 20625 Bolt Beranck and Newman Inc,

+3D0ALL

6% G2 #0¢ EDIT TRIANGLE

94 G3 #4¢ 10 HUARK * X *

04y O4 ¢4 4O MARK * X * SUK * X v 1
¥0¢ 65 #¢¢ END

$44 06 o49 TRIANGLE 3

X

SUYH OF “X* AND ¥

INPUTS HUSY DE MUMBERS.

1 HAS AT LINE 20 IN TRIANGLE

¢ 75 ¢4 LIST SUPERMARK

T0 SUPERMARK :CHAR: :N: LET:
10 HARK :CHAR: :N:

20 HARK :LET: :M:

END

= 4

$4¢ 76 &% EDIY TRIANGLE
¢6¢ 78 ¢4 TRIANGLE : N : ¢ M :
TRIANGLE HAS MOV BEEN COMPLETELY DEFINMNED,

TO TRIANGLE :N:
¥
i;?x;ﬁ.;“' 19 MARK :X: 1)
Ei&;'r%‘g:'“ 28 TEST IS SUM 1 1 :N:

3¢ IFTRUE STOP
49 MARK "X" SUM 1 1
END

Figurc 4.

Report No., 2625 Bolt Beranek and Newman Inc,

«$INERE
AT DRIGBLE LIKE 97
HHICH 1§
TRIHGLE Y
THE PROCEDURES TRIANGLE MARK SUPERHARK RECTANGLE SUBRECTANGLE FIND HALF
DELEYE STRIPE MIDOLE NUM TRIANGLE HAVE BEEN DEFINED
«4DISPLAY “STRIPE™

*.

STRIPE

SUBRECTANGLE

SUPERMARK RECTANGLE

MARK

Figure §.

Report No. 2625 Bolt Beranck and Newman Inc,

«4015PLAY "TRIANGLE"
«L 16T HUM

T0 NUM :N;
10 MAKE :N: 1
END

¢LIST TRIANGLE

TO TRIANGLE :M:

10 MARK "X" NUM :N:

20 PRINT v

30 TESY 16 DIFFERENCE :H: 1 O
40 IFTRUE sTOP

538 MARK *“X* SUM NUW :N:

END

+«$DOALL

444 187 494 EDIT TRIANGLE
$64 182 ¢4¢

o4 4END-OF -FILES#44

«PRINT :FINAL CONTENTS:

TRIQNGLE 1 1 MARK 9 2 SUPERMARK 15 4 RECTANGLE 19 5 SUBRECTQNGLE 26 3
FIND 33 1 HALF 39 § OELETE 43 2 STRIPE 48 4 MIODLE 55 2 NUM 87
TRIANGLE 90 4

[fent) TRIANGLE
v] (& NUM MARK
Figure 6.

Roport No., 2625 Bolt Boranck and Newman Inc.

+$STEPPROCEDURE *TRIANGLE™
22)10 TRIANGLE : N
¢
T0 TRIANGLE : N
os)>{0 HARK * X *
"
T TRIANGLE : N :
10 HARK * X ~
12320 7T IS SUH *“ X *{ ¢+ N
*
10 TRIANGLE :
10 HARK * X *
20 7 1S SuMm ~
5s)30 IFY ST0P
*
YO TREANGLE : N
10 MARK * X
20 T IS SUM *“ x “ 1§ : N
30 IFT st0P
zx)40 HARK SUM * X * |
't
10 TRIANGLE : N
2210 MaR¥ v ¥ v g
20 7T IS SUM Y X Y §{ : N
30 IFT S0P
49 HARK SUM * X * |
*
10 TRIANGLE : N
10 MARK * x * 1

X

N ¢

X 1 : N

20 T 1S sun “1: KN

30 IFY ST0P

sx)40 HARK * X * SUH * X * 1§
¥

T0 TRIANGLE : N
10 HARK * X "
23320 T S SUH 1 % : N
30 IFT s10P
KO MARK * X " SUH “ x * §
¥ .
T0 TRIAQNGLE : N :
10 HARY ¥ % *
20 T 1S SUM $ 1 : N
36 IFY ST0°
- 82340 HARY * X * SUM 1 1§
¥

Figure 7,

Roport No, 2625 Bolt Beranck and Nowman Inc.

T0 TRIANGLE : H
10 HARK " X * NUM : N :

20 PRINT » ~
xe)30 T ISDOIFF : H : 1 0
L

T0 TRIANGLE : M :

10 HARY * X * NUY : N ;
20 PRINY » =

30 T IS DIFF : M ; 1 »
z2)40 IFT STOP

¥

10 TRIANGLE : H :

10 HARK * X * NUM : N :
20 PRINY = ~

30 VT IS OIFF : B : 1 0
49 IFY STOP

tx)>50 HARK " X * SUH NUM : N : 1
¢

T0 TRIRNGLE : M :
s2)10 HARK *“ X * “ N "
20 PRINY =« ™

30 T IS DIFF : H : 1 0
40 IFY STOP

S0 MRRK * X * SUM NUM : N :
L]

T0 TRIRNGLE : H :

29)10 MHARK " X * “ NU *

20 PRINT *

30 V ISDIFF : H: t 0

40 IFY STOP .
SO0 MARK “ X * SUM NUMH : N : §
' .

TO TRIANGLE : M :

10 HARK “ X " * NU .*

#2200 HARK “ X “ SUM “ NU * §
30 VY IS ODIFF : H: 1 @

40 IFT STOP

S0 HARK * X * SUM NUM : N : 1§
¢

TO TRIANGLE : H

10 HMARK * X * “ Ny ~

z2)20 PRENT * *

30 T IS DIFF : H : 1 0

40 IFY STOP

S50 MARK * X * SUM NUH : W :

N Figure 8.

Report No. 2625 Bolt Boranck and Nowman Inc,

10 TRIANGLE : H :

23)10 MARK " X " : NU :

20 PRINT *« «

30 V ISOIFF : W ; 4 @

49 IFT STOP

50 MARK * X * SUM * NU *
$

T0 TRIANGLE : H :

10 HARK * X * : NU :

20 PRINT *

0T ISDIFF : M : 1 O

40 IFT $TOP

=2)50 HARK “ X “ SUM : NU : 1
¢

T0 TRIANGLE : H

10 MARK " X * : NV :
20 PRINT * «

30 T ISDOIFF : M : § 0
40 IFT sT0P

=2)50 HAKE

L

10 TRIANGLE : M

10 MARK * X * : NU :
20 PRINT =* »

30 T ISDIFF : M : 1 0
40 IFT stoP

50 HAKE

=260 TRIANGLE : M :

¢ .
T0 TRIANGLE : M :

10 UARK * X * : NU :

20 PRINT * ~ \

36 T ISDOIFF : H : 1 @

40 IfFT1 SIoP

S0 HAKE

xe)60 TRIANGLE : N :

*

T0 TRIANGLE : M :

10 MARK * X " : NU :

20 PRINT =« ~

s2)30 T IS OIFF ¢: N : % O
40 IFT sTOP

S0 MAKE

60 TRIANGLE : N

¢

*

Figure 9.

Report No., 2625 Bolt Beranck and Newman Inc.

3. Example 2

This example shows the use of the system in an intensive,
deep, sustained analysis of student work at operational and
intentional levels. The student's work shown in this dribble
file is aimed at crocating a procedure DIAMOND for drawing a
diamond-shaped figure. The student's plan in designing this
procedure is to create two sub-procedures -- NUM for drawing
triangle and UPD for drawing an '"upside-down" triangle. The
ekecution of a NUM followed by the execution of an UPD with
matching input should produce the desired result., Figure 10
shows the analyst's execution of the initial lines of the student's
dribble file, via the command $DOALL. These lines define the
procedures MARK, SUPERMARK, RECTANGLE, SUBRECTANGLE, and
(partially) FIND, A little later on, as seen at the beginning
of Figure 11, the procedure NUM appears to be working. NUM
simply initializes and invokes the triangle drawing procedure
TRIANGLE. Student line ***69*** is an execution of NUM 4 and
this results in the drawing of a triangle with 4 rows of X's.

Alrecady the student's work seems to be half{ finished.

In dribble file lines ***70*** through ***78*** the student
has defined the upside down triangle drawing procedure UPD. On
line ***79*** he has called for the execution of the procedure

. UPD4. This is an error (he meant to write UPD 4). So LOGO
complains that UPD4 NEEDS A MEANING, At this point the analyst
executes a $WHERE to list the currently defined procedures. He
then diagrams the procedure structure of TRIANGLE (Figure 12) and
proceeds by executing the next lines 'of the student's progranm
with $DOALL (Figure 13).

Roport No. 2625 Bolt Beranck and Newman Inc.

Now the student has correctly called for the execution of
his UPD procedure (Linec ***80***), But, UPD 4 does not produce
the desired upside down triangle, Instecad, it continues indefi-
nitely to draw rows of 4 X's, The analyst terminates this with a
BREAK and then lists the procedure UPD. Superficially it appears
correct -- it has a stopping condition and end test defined in
lines 3P and 4f and a decremental iteration of the input in line
5. (This directs it to draw two less X's on cach successive row
of the upside down triangle.) But, obﬁiously something is wrong.

Figure 14 shows the analyst executing the next lines of the
student's work. The student has started to debug UPD. In lines
**#82*%* he puts a TRACE on UPD and then executes UPD 4 again.
The trace lists the successive invocations of UPD. The correct
sequence of calls should begin UPD OF "4, uUpD OF "2, ..., .
Instecad, UPD OF "4" calls UPD OF '"4" indefinitely. After a BREAK
the analyst executes another $DOALIL to see the student's next move.
The student has‘now decided to list UPD. After this (line
86) he once more executes UPD 4, (Probably he couldn't see
that anything was wrong and wanted to try the procedure again --
perhaps the computer had made an error of some kind.) But this
produces the same unfortunate result,

By the next line, some¢ light has dawned. Figure 15 shows
the student fixing a bug in UPD. Dribble file lines ***g]***
through ***93*** show him editing the procedure. He changes line
5 of his procedure from
MAKE :N: DIFF :N: 2

to
MAKE "N'' DIFF :N: 2
This makes effective the decrementing of :N: by 2 on each round.

The student calls UPD 4 again on the following line. And now

4-15

Report No. 2625 Bolt Beranek and Newman Inc.

another problem appears: UPD 4 writes a row of four X's and then
calls UPD 2 which writes a row of two X's, which in turn calls
UPD § which writes what appears to be an endless row of X's. The
analyst breaks the execution of UPD.

The following $DOALL exposes the student's next line. lie
executes UPD @ to confirm its nonterminating effect. Then (in
line ***990*** jpn Figure 16) he has traced this effect down one
level to find the subprocedure MIDDLE fesponsible. MIDDLE s¢ 1 ¢
produces the same nonterminating sequence of marks (1's in this
case). At this point the analyst lists the procedure. MIDBLE to
see what 1¢ does. And, as is shown, MIDDLE invokes the subproce-
dure MARK two times. He then executes the student's next line
%1P1* which shows the student himself running the subprocedure
MARK and observing that MARK 1 P replicates the results of
MIDDLE 5S¢4 1 # and UPD @, its big bLrothers.

After breaking the execution of MARK, the analyst lists
MARK :CHAR: :N: and presumably sees that, when its second input
is #, MARK will indeed fail to stop. Instead it will slip through
the test for :N:=§ and indefinitcly continue with a sequence of
negative :N: values. This is also understood by the student who
has (Figure 17) traced MARK and certainly noted this. The
student's response is interesting. Instead of debugging MARK so
that its stopping condition will work for even :N: as well as for
odd :N:, he has evidently realized that his DIAMOND procedure
only invokes MARK with odd values of :N: (since diamonds always
have odd numbers of X's in their rows; thus UPD 1 will make the
last call to MARK and MARK "X" 1 will stop after typing a single
"X" mark). So the student realizes that he can ignore the
difficulty with MARK, since it is not relevant to his goal, and
he procecds with DIAMOND. In lines ***112*** through ***]]5***
he defines DIAMOND as NUM 8 followed by UPD 15. - nares

Report No. 2625 Bolt Beranek and Nowman Inc.

Then (Figure 15) he executes this DIAMOND procedure and it
works., Obviously, though, he is unsatisfied with it. It is only
capable of drawing the single diamond made up of an 8-rowed
triangle on top of an 8-rowed upside down triangle. In the next
few lines he erases.this limited drawing procedure and defines a
more general DIAMOND procedure with two inputs. DIAMOND :L: :V:

is defined as NUM :L: followed by UPD :V:. He tries this
(Figure 19) with a 9-rowed triangle and it works at once.

But, he is still dissatisfied with the inelecgance of the
definition. The procedure should be smart enough to work with a
single input and automatically match the interface between the
triangle made by NUM and the upside down triangle made by UPD.

So he again erases the current version of DIAMOND and rewrites it
as a single~input procedure DIAMOND :L: composed of NUM :L: and
UPD :L: + :L: -1. Upecn trying DIAMOND S he finds that the seams
do not quite match -- the first row of X's made by UPD is thc same

size as the last row of X's made by NUM (instcad of two X's
smaller),

He fixes his procedure (Figure 2§} by changing the input of
UPD to :L: + :L: -3, Now his procedure apparently satisfies his
goal. He exercises it several times with various inputs,
including {(line ***151***) a random input. After listing his
procedures MIDDLE and TRIANGLE and asking for the time of day,
he starts to log out. In Figure 21 the analyst executes a
$WHERE, displays the procedure structure diagram for DIAMOND, and
exccutes the last lines of the dribble file.

4-17

Report No. 2625 Bolt Beranck and Newman Inc.

$00ALL

ook 3 444 TO HARK CHAR ¢ ¢ N

¢4 4 o0¢ $0 TYPE : CHAR

$6¢ S 044 20 TESY 16 DIFFERENCE ¢ N ¢+ » § * ¥ 0
464 6 ¢¢¢ 30 IFTRUE STOP

¢64% 7 4¢s 40 BARK ¢ CHAR : DIFFERENCE ¢+ N ¢ » 1 ¥
60 8 v END ‘

o066 O ¢4s TO SUPERMARK ¢ CHAR ¢+ ¢+ N s ¢+ LET ¢+ 1+ H

$04% 10 ¢oy 40 BARK : CHAR : :+ N ¢

ebe 15 o868 20 UARK 4 LET ¢ : M,

¥6¢ 12 ¢4 END

64 13 4%¢ YO RECTAHGLE : LEYT : : Mt ¢ N+ ¢ CRAR : ¢+ Y 1

o0¢ 14 ¢4 40 SUPERMARK : CHAR : ¢ ¥ ¢ : LEY 1 : H :

toe 15 e%y 20 PRINY ¥

¢¢¢ 16 o4 30 TESY 1S OIFFERENCE : N ¢+ 8 * " o *

o¢e 17 ¢4 40 IFTRUE STOP

o0 18 oo 50 RECTANGLE : LET : : M : DIFFERENCE : N : * § * ; CHAR :
Y :

¢¢¢ 19 ¢¢¢ END

¢¢¢ 20 +es TO SUDRECTANGLE : M ¢ : N & ¢+ ¥

v0¢ 21 wo¢ {0 SUPERMARK * Y i Y s YX Y H

$66 22 w44 15 PRINY v v

¢6¢ 23 ¢4 20 TESY IS DIFFERENCE : N : " § " * 0 *

$6% 24 #¢s 30 IFTRUE STOP

o464 25 #¢4 40 RECTANGLE * X-“. : W : DIFFERENCE : N : " 1 * * * s ¥

5% 26 4% END

#6427 4%% YO FIND : N

466 28 4% 30 TEST GREATERP * 2 * DIFFERENCE DIFFERENCE : N : : TRIAL :
: TRIAL :

40 29 *¢4 40 IFTRUE OQUTPUT : TRIAL

#¢¢ 20 ¢4 S0 HaxE * TRIAL = SuH : TRIRL : * 1

$¢¢ 31 ¢4 60 OUTPUY FIND : N :

1 ey TO FIND :N:
lﬂﬂuﬁﬁﬁﬂﬂﬁ"“'”"“'m'm““"“' 3¢ TEST GREATERP 2 DIFFERENCE
10 RME IBIKS Bm 1T8IN 8 DIFFERENCE :N: :TRIAL: :TRIAL:
"~ 49 IFTRUE OUTPUT :TRIAL:
. 5p MAKE “TRIAL' SUM :TRIAL: 1
END
Figure 10.

Report No., 2625 Bolt Beranek and Newman Inc.

st GG d4¢ EDIT TRIANGLE
49 67 w99 30 T 1S SUM ¢+ N : DIFF : N 1 1 1 NU
49 68 4440 KD
€48 69 444 NUM 4
X
XXX

XXXXX

XXXXXXX
#4¢¢ 70 €0¢ YO UPD : N ;
64 71 o7 410 NWIODLE S0 “ X “ : N
€48 72 z#4 20 PRINY « v
¢4 73 049 30T 1S N 1 8
46 74 44 IFT STOP
96 75 444 4O IFT STOP
44 76 49 SO MAKE : N : DIFF : N : 2
$4¢ 77 ¢¢¢ 60 UPD : N :
¢ 78 ¢¢4 END
4% 79 so¢ UPDY
UPDY NEEDS A MEANING,
I HAS AT LIKE 35 1N $DOLINE

(21D TO UPD :N:

e

A 19 MIDDLE 5@ "X" :N:
T 2§ PRINT "

it ST 3¢ TEST IS :N: 1

4p IFTRUE STOP

5@ MAKE :N: DIFFERENCE :N: 2
6@ UPD :N:

END

Figure 11,

\‘\ ‘ 4‘19

Report No. 20625 Bolt Beranck and Newman Inc,

“$HHERE
AT DRIBBLE LINE 79
HHICH 1§
UP DY ' ‘
THE PROCEOURES MARY SUPERHARK RECYANGLE SUBRECTANGLE FIND HALF DELETE
STRIPE MIDDLE NUM TRIANGLE UPD HAVE BEEN DEFINED
«40ISPLAY “TRIANGLE™

va

. [t TRIANGLE
LUla L MIDDLE
% [~] HALF MARK
FIND

Figure 12,

Report No. 2625 ‘ Bolt Beranck and Newman Inc,

+1DOALL

70y 80 v¢ UPD M
KKk
XKNX
KK XX
XXX X
KXXX
XXX X
XXX
XXX
XX KX
ALKy
KXXN

XXXK
XXKY
XXXX

BREAY :

1 HAS AT LINE 40 IN FIND

L 15T UPD

10 UPD :N;:

10 MIDDLE 50 “X* :N:

20 PRINT v~

30 TESY IS :N: 1

40 IFTRUE SToP

50 MAYE :N: DIFFERENCE :MN: 2
60 UPD :N:

END

-
-

TRIANGLE
MIDDLE

HALF MARK

FIND

Figure 13,

\) . 4"'21

Report No. 2625 Bolt Beranek and Newman Inc.

«400nLL N
s 81 s¢4 TRACE uPD a
$ve 82 604 UPD 4 f
UPD OF “4*
XXXX
UPD OF "y
XXX X
UPD OF "y
NN
UPD OF “u~
T
uPD OF =4~
Al
UPD OF w4~
BREAY
I HAS AT LIKE 310 1N HARy
«4D0ALL

eve 84 oo L1ST UPD

(TRACED) t0 UPD :h:

10 HIDDLE SO *x* :N:

20 PRINY ™

30 TESY 1S :N: 1

46 IFYRUE StoP

SO HA¥YE :N: DIFFEPENCE :N: 2

60 UPD :H:
END
¥%9 86 e¥¥ UPD &
UPD OF “qy~
L LW
UPD OF =4y~
UPD OF *y- |
UPD OF “4-~
Yera TRIANGLE
MIDDLE
HALF MARK
FIND

Figure 14,

Report No. 2625 Bolt Beranck and Newman Inc,

eeé 88 v4s CANCEL '
CANCEL NEEDS A MEANING,

1 HRS AT LIHE 35 IN ¢DOLINE

+4D0ALL

008 83 440 P Yy

2

00 90 40 P ;6

#6¢ 91 %04 EDIY UPD
66 92 490 S0 HAKE * N * DIFF : N : 2
$060 92 644 END
$40 9% o8 YPD &
UPD OF =y~
Ak
uPD OF “2~
L |
uPD 0F *0~
CEYE R P T R AR LK RN AR KK R NN XEX KN XXX XX
XXX NXXXNKR SN AKK A KL R Sy g e a A n WA XA O RN RAA XN KX K NN N XXX N XX
XXXAX
BREAK

+$D0ALL _
4ay Q7 o6y UPD O
UPD OF “p*

XXX XX KRN RIONKAKINEX XXX KA AKX XXM XA X
XK OXCEXO0O00X X000 KOO XXX R XX N XXX X XN XXX XN XK XXX
XXX KKK KK KRR KKK KOO XK XK UK XX XHX

BREAK
1 HAS AT LINE 30 IN HARK
P‘ ‘
4
TO UPD N:
' o s 1p MIDDLE 5¢ "X" :N:
gﬂmhynnn zg PRINT 't
88 141 18 10e 4 3@ TEST IS :N: 1
:';:f.!i‘f.!'ﬁnmm W 4p IFTRUE STOP

5§ MAKE “N" DIFFERENCE :N: 2
60 UPD :N:
END

Figure 15.

Report No. 20625 Bolt Beranek and Newman Ineg,

«400ALL
ooy 99 vee HIDDLE S0 1 O
IR R R R R R R R R R R R R R R SR R R R R R R R R E R R R R R E B R Y
R E R E R R E R R R E R SR EEREER R R}
R R R R PR RS SRR R R R R R E SRR EERE RN
BREAY '
I HaS al LIHE 20 1H HARY
&IST HIDLE
«L1ST HI0DLE

10 HIDDLE :N: :x: v

10 HARY “& DIFFERENCE nALF :N: HALF PRODUCT COUNT :¥: :¥:
20 HARY :X: i

ERD

¢ #D0ARLL

vey JO1 vay MARY § O

R E R R R R R R R R R E R R R R R R R Y
12 R SR R R R R R R N RS R R R RS R R SRR R R R RS E R EREE T
P R E RS E R R R R E R R R R R R R R R R R R RSB R FE RN RS §
1

BREAY

[WAS AT LINE 10 JH HARY

«L1ST HARYK

T0 MARY (CHAR: N

10 TyPE :CHAR;

20 TEST IS DIFFEPENCE :N: ¢ O
30 1FYRUE ST0P

40 HARY CHAR: DIFFERPENCE :hi:

ElD
.’.
TO UPD :N:
S 19 MIDDLE 5§ "X" :N:
it 20 PRINT "
TROEOY 30 TEST IS :N: 1
W tat s ST Eaact i g 49 1FTRULE STOP
Al 50 MAKE "N" DIFFERENCE :N: 2
6p UPD :N:
END
Figure 16.

Report No.

2625
1
HARY OF "3 AND “-%5*
i
MARK OF “4* AND “-~56
1
HARY OF “4* AND "-57"
i
HARY, OF “$* AND “-58"
i
HARY. OF “1* AND “-59
i ‘
HARY OF “§* aND “~60"
i
MARY OF 3% AND *-61"
i
HARY OF “1* and “-62-
t
MARY OF “{* aud "-63-
y :
HARK OF “1¥ AND *-64~
BREAV
+$00RLL
¢dd 110 #4¢ ERASE ALL TRACES
#¢¢ 141 4% UPD S
XXXXX
XXX
X
6% 112 ¢%¢ YO DIAMOKD
o464 113 3% 30 NUM 8
EEY 114 44 20 UPD 15

$0¢ 145 44% END

g3=s
$i;
i

Figure 17,

4-25

Bolt Beranek and Newman

TO DIAMOND
19 NUM 8
29§ UPD 15
END

Inc,

Report No. 2625 Bolt Beranek and Newman Inc,

#¢0 £16 oo ¥ DIANOND

X
XXX
XXXXX
YXXXXXX
KXXXXXK XX
KXXXXXXXXXX
KXXXXXXXKXXXX
IAXKXKXXKXKXKXXX
XOOXRKXX XXX XK XX
KXXNXXKNXXXKX
XXNKXKKX XXX
XAXKXX XX A
KXKX XXX
XXX XX
XK
|
¥oe 147 o990 EDIT DIAMOND
$00 118 oov 10 NUM 9
¢0¢ 119 s00 END
$0% 120 €90 DIAMOND
«0DOALL
#¢% 121 o444 ERRSE DIaMOND
6% 122 000 1O OIAMOND L ¢ ¢V
eed 123 040 10 NUM 5 L
$od 124 s 20 UPD ;v
¥y 125 600 END
Figure 18.

Report No, 2625 Bolt Beranek and Newman Inc,

€66 126 ¢¢¢ DIAMOND 9 15
X
XXX
XXXXX
XXXXXXX
XXXXXKX XX
XXXXXXXXXXX
XXXXXXNKXXNXX
XXXX XN XN XXX
XOOXNXXXXNEXX XX XXX
KXXXXNXAKEXNNKK
XXXXERXX XXX AX
XXXXKKKXNXX
XXXXKXKKX
XXNAKAX
kaXXX
X
X

«400ALL
€66 128 o¢¢ EDIT DIAMOND
66 129 ¢4 END
¢ve 130 o4¢ ERRSE DIAMOND
€66 133 ¥¢¢ YO DIAMOND : L
€66 132 400 40 NUH ; L
€66 133 469 20 UPD SUM : b : DIFF 1 b : §
€66 134 606 END
$¢¢ 135 e¢¢ DIAMOND S
: X
XXX
KXXKX
XXKXKXX
XXXKRKKKX
XXX KN K
KANKK2X
KR RNR
PEX -~
X

Figure 19.

Q 4-27

Report No.. 2625 Bolt Beranck and Newman

#4¢ 136 94 EOIT DIAMOND

¢4 137 404 20 UPD SUM ; L : OIFF s L ¢+ 3
$4¢ 128 s4¢ END

€44 139 444 DIAHOND 3

XX
XXXXX
XXX
X
44 140 ¢e¢ DIAMOND 7
4
[
ANaax
XK RKKX
BREAK

44 151 vo0 O1AHOND RANDOM
X
XXX
XXXXX
XXX
X
¥4 152 ows L|ST MIDDLE

TO KIODLE :N: :X: :Y: ‘ .

10 HARK “w* DIFFERENCE HALF :N: HALF PRODUCY COUNT :X: :Y;
20 MARK :X: :Y: :

END

%4 153 vev LIST TRIANGLE

T0 TRIANGLE :N:

10 HIDDLE S0 *"x* :NU:

20 PRINT *~

30 TEST IS SuM :N: DIFFERENCE :u: 1 :NU:
40 1FYRUE STOP

S0 MAKE “NU® SUM :hU: 2

END

$o4 154 #44 P TIME
$:38 aM
«4% 155 444 LOGOUT

Figure 20.

28

E-3
]

Inc.

Report No. 2625 Bolt Beranek and Newman Inc.

«dHHERE
RT DRIBOLE ‘LINE 155

HHICH [$
LoGou? :
THE PROCEDURES MARK SUPERMARK RECYANGLE SUBRECTANGLE FIND HALF DELETE
STRIPE MIODLE NUM TRIANGLE uPD D1AMOND DIAMOND D1AMOND HAVE BEEN DEFINED
«4D1SPLAY “DlaNMOND"

.‘A
Vi) DIAMOND
~
Crs3 333 Num upD
I -
[Heted] L*zzu TRIANGLE ~ MIDDLE
B ZE
I7-7~_'3 C¥) HALF MARK
(] FIND
*4D0ALL
sar 158 oo
CreeEND-0F~FlLENuvuy
¢
Figure 21.

Report No. 2625 Bolt Beranck and Newman [nc,

4. Example 3

This dribble file documents the development of a set of
programs written to generate grammatic sentences with randomly
chosen constituents, Figure 22 shows the execution of most of
the lines of the dribble file. Specifically, the procedures
CHOOSE, RANDOMCHOOSE, GETNOUN, GETVERB, GETADJ, GETCON,
MAKEDICTIONARY, LfTTLESENTENCE, SIMPLESENTENCE, BIGSENTENCE,
TALK, KEEPTALKING, and TALKALOT have been defined, Most of these
procedures are short (1 - 4 lines) and their effects are quite
transparent,

CHOOSE has two inputs -- an index and a list of words. It
sclects the word in the list specified by the index. RANDOMCHOOSE
has a list of words as input. It uses CHOOSE with a random digit
as an index, to select a word in a ten-word list at randon.
GETNOUN, GETVERB, GETADJ, and GETCON are procedures that use
RANDOMCHOOSE to randomly select a noun, verb, adjcctive, or
connective, respectively, from correponding word lists of such
constituents, MAKEDICTIONARY crcates these four word lists.
LITTLESENTENCE generates a random sentence of the form <noun>
<verb>, using GETNOUN and GETVERB.

SIMPLESENTENCE uses GETADJ and LITTLESENTENCE to generate a
random sentence of the form <adjective><noun><verb>. BIGSENTENCE
:SIZE: gencrates a random sentence of the specified number of
clauses, each of which is generated by LITTLESENTENCE. The
clauses are joined by connectives randomly generated by GLETCON.
The procedure TALK simply invokes MAKEDICTIONARY and then
BIGSENTENCE. KEEPTALKING calls TALK (with a random digit for
:SIZE:) and then calls itself. Its effect is to generate

‘randomly composcd sentences of random size indefinitely.

Report No. 2625 Bolt Beranck and Newman Inc,

TALKALOT :N: calls TALK (with a RANDOM input) :N: times; thus it
genorates N: random sentences of random size.

Flgure 23 shows student trials of morec of these procedures,
following the execution of a $WHERE by the analyst., The student
tries TALK with :SIZE: 1, then 3, then 2; then he tries TALKALOT
with (N:=2; then he tries KEEPTALKING, whose exccution is inter-
rupted with a BREAK at the end of the figure.

In Figure 24 the analyst diagrams the procedure structures
for LITTLESENTENCE and SIMPLESENTENCE. In Figure 25 he displays
the diagram of one of the top level procedures, KEEPTALKING,

The conventions used in these diagrams are straightforward. Each
box is associated with the procedure whose name labels the box.

A directed line from box [:] to box [:] denotes that procedure

P uses procedure Q. When P uses Q and both are in the same row
(level) of the diagram (because both are used by some other
procedure) then a directed arc is used to join [E] and [§].

The usefulness of these diagrams in giving the analyst a
global overview of the progrém structurc is evident here. Most
systems of programs, both those generated in extended student
projects and those produced in professional programming work,
are a great dcal more complex than the sentence generator of this
example. Typically there are larger numbers of programs, program
interconnections, levels of call, and recursive parts; and the
components are larger and more opaque. Diagrams arc especially
useful when used to aid the analysis of these more complex

program structures,

-

Report No. 2625 Bolt Beranck and Newman Inc.

€60 2 408 T0 CHOOSE : 4NDEX ¢ : LIST .

€60 3 w00 10 IF : INDEX : v O OUTPUT FIRST OF LIST + ELSE oUTPUY

- CHOOSE ¢ ¢ INDEX & = 1) (BUTFIRSY OF : LIST :)
T ael- Y404 END
€66 5 000 10 RANDOHMCHOOSE : LIST
$68 6 400 10 OUTPUYT CHOOSE OF RANDOM AND : LISTY
64 7 ee¢ END :
¥¢s 8 ¢s¢¢ YO GETHOUN
08 9 ooe 3 OUTPUT RANDOMCHOOSE : HOUNS

te¢ 10 464 END

¢¢d L1 ¢4¢ TO GEYVERB

€¢% 12 ¢4¢ 1 OUTPUT RANDOMCHOOSE : VERBS

¢e¢ §3 600 END

¢0% 14 ¢44 TO GETADY

$¢¢ 15 o001 OUTPUT RANDOMCHOOSE : ADJECTIVES

#0416 ¥¢9 ERD

¢ 17 4¢¢ T0 GETCON

¢¢¢ 13 ses § OUTPUT RANDOMCHOOSE : CONNECTIVES

oo 19 #0¢ END

ted 20 4694 10 HAKEDLICTIONARY

¢6¢ 2% %00 1 MAKE * NOUNS * ¥ PROGPAMS BUGS CHILDREN GURUS TURTLES
LOVERS TRUTHS POEMS GUGGLES $TARS -

¢80 22 440 2 MAYE ¥ VERBS * * nORZ HURT PETUPN LEARN PLAY SING FALL
OUTPUT CELEBRATE LAUGH "

o690 23 ¢00 3 MAPE * #DJECTIVES ~ * IKCREDIBLE GOOD NOISY BEAUTIFUL OLD
OVOID TRPUE ADSTRACT 034 10uUS GRONCHY ™

“6% 24 %4 4 MAYE * CONNECTIvES * » SIKNCE AXND WHILE THOUGH BUT AS YEY IF
UNTIL BECAUSE *

vye 25 ¢4 E£ND

244 26 944 TO LITTLESENTENCE

€00 27 ¢v9 10 OUTPUT SENTENCE OF GETNOUM AND GETVERB

¢4 28 $¢¢ EHD

¥o¢ 23 wes TO SIMPLESENTENCE

€66 30 o490 10 OUTPUT SENTENCE OF GETADJ AND LITTLESENTENCE

e 31 o0 END .

¢4¢ 32 444 10 BIGSENTENCE : $I1Z2E

€48 33 eey 10 IF ; SIZE : = § OUTPUT SIMPLESENTENCE ELSE OUTPUT
SENTENCES SINPLESENTENCE GETCON BIGSENTENCE ¢ : SI2E : - 1)
$0¢ 34 s END

¢o% 35 468 10 TALY : SIZ2E

6% 36 #0903 MAYEDICYIONARY

400 37 €%t 2 PRINT BIGSENTENCE + SIZE

¢ 38 oo END

€44 39 wes 10 rEEPTALYING

¢ed 4C o0 1 TaLry 2aNDOM

#6041 ¢0¢ 2 VEEPTALY ING

Y00 42 60 END

¥6¢ 43 see TO TALKALOY : N :

sk0 HY wee 40 IF : N : = 0 STOP ELSE TALK RANDOM

Y06 45 eee 20 TALKALOT o N -

¢¢¢ 46 ¢¢4 END

. Figure 22.
\‘1‘ -
4-32

Report No. 20625 Bolt Boranek and Newman Inc,

+$HHERE
AT DRIBDBLE LINE 46

HHICH |$
£ND <o
THE PROCEDURES CHOOSE PANDOMCHOOSE CETHOUN GETVERB GETADJ GETCON
HAYEDICTIONARY LITTLESENTENCE SIMPLESENTENCE BIGSENTENCE TALY
KEEPTALYING TALYALOT wAVE BEEN DEFINED

«400T0 75

€60 HO #44 TALK

BEAUTIFUL STARS CELEBRATE

769 SO %00 TALK 3 i

NOISY CHILDREN HORK WHILE GRONCHY CHILDREN OUTPUT AS TRUE TRUTHS

CELEBRATE '

66 51 o644 TALK 2

TRUE BUGS CELEBRATE BECAUSE GRONCHY CURUS REYURN

¥k0 52 wiy TALKALOT 2

OVOID GURUS SING IF BEAUTIFUL GUGGLES SING WHILE 600D POEUS RETURN SIMNCE

OLD TURTLES HURT THOUGH MOJSY LOVERS HORY DBECAUSE GRONCHY GURUS LEARN

SINCE OLD PROGRAMS FALL BECAUSE OLD GUGGLES FALL

BEAUTIFUL LOVERS SING IF HOISY GUGGLES CELEDRATE AS INCREDIBLE PROGRAMS

RETURN AND THCREDIBLE POEMS FALL YET BEAUTIFUL GURUS FALL IF 600D BUGS
" SING TKOUGH BEAUTIFUL PROGPAMS RETYUPY

4¥¢ 53 se4 VYEEPTALYING

ABSTRACT BUGS SING UNTIL TRUE TURTLES OUTPUT UNTIL HOISY POEMS LEARN
BREAK

I HRS AT LIKE 10 1k CHOOSE

*

TO TALKALOT :N:
18 Kot o

1811 i1ad 4132 £t Ve tade 19 IF :N:=0 STOP ELSE TALK RANDOM
et it 2¢ TALKALOT :N: !

END

Figure 23.

Report No. 20625 . Bolt Beranck and Newman Inc,

*IDISPLAY “LITTLESENTENCE ™

[]
.

LITTLESENTENCE
GETVERB GETNOUN

RANDOMCHOOSE

CHOOSE

C4DISPLAY “SIHPLESENTENCE ™

»

SIMPLESENTENCE
LITTLESENTENCE GETADJ

GETVERB GETNOUN RANDOMCHOCGSE

CHOOSE

Figure 24,

4-34

Report No. 2625

c4D18D A “rLEPTALY NG

L]
L]

oy
)

‘et

Bolt Beranck and Newman Inc.

KEEPTALKING
TALK

MAKEDICTIONARY BIGSENTENCE
GETCON SIMPLESENTENCE
LITTLESENTENCE .'GETADJ
GETVERB GETNOUN RANDOMCHOOSE

CHOOSE

Figure 25,

L
]

35

Report No. 2625 Bolt Beranck and Newman Inc,

5. Example 4

The system of programs in this dribble file deals with the
extrapolation of sequence. Given a number sequence such as
12 34, the system tries to "guess" the next term so as to
satisfy the user. It does this by trying out various extrapolat-
tion procedurcs to see if any of them successfully extrapolate
the known terms, i.ec., ektrapolate 1 to 2, 2 to 3, and 3 to 4 in
the example given. If not, the system asks the user for the
extrapolation procedure he was using and, after assuring that it
successfully extrapolates the known terms, adds it tec its growing

repertory of trial procedures.

These programs are developed in the first part of the dribble
file (Figures 26 and 27). The system compriscs seven programs:
CASSANDRA, EXECUTE, CHECK, SECOND, SCAN, SUCCESS, and CONTINUE.
CASSANDRA (which is defined in lines ***2%** through ***Qg***) jg
the top level program. It starts by asking its user to type in
a sequence. After accepting the sequence, it uses the procedure
SCAN to search its existing extrapolation procedures (in
:PROCEDURE BANK:) to see if any of these successfully extrapolate
the given sequence. If so, it stops; otherwise, it asks the user
to define the correct extrapolation procedure and, when done, to
resume operation by calling the procedure CONTINUE.

EXECUTE and SECOND (lines ***10*** through ***]2%%* gp(
¥*%20*** through ***22***) are small utility procedures. EXECUTE
:PROCEDURE: :INPUT: performs the specified (single input)
!PROCEDURE: with the specified :INPUT: and outputs the result.
SECOND :LIST: outputs the second element in the specified :LIST:.

Report No., 2625 Bolt Beranck and Newman Inc.

CHECK :PROCENDURE: :SEQUENCE: (Lines ***13*%** through
19) tests whether the specified procodure successfully
extrapolates the successive terms in the specified sequence. If
so, it outputs "TRUE"; if not, "FALSE". For example, consider
the procedure ADD1 whose output is 1 plus its input:

TO ADD1 :INPUT:
1 OUTPUT (:INPUT: + 1)
END
CHECK of ADD1 "11 12 13" outputs "TRUE" fsince ADD1l of 11 = 12

and ADDI of 12 = 13) but CHECK of ADD1 "2 4 6" outputs "FALSE"Y
(since ADD1 of 2 ¢ 4).

SCAN :SEQUENCE: :PROCEDURES: (lines ***24*** through
¥**33***) scans through the given list of extrapolation procedures
one at a time with CHECK, to find whether one of these procecdures
successfully extrapolates the known terms in the given sequence.
If so, it uses this procedure to extrapolate a next term and
(using the procedure SUCCESS) determines whether or not the
extrapolated next term is acceptable to the user. If unacceptable,

it tries again with the remaining procedures.

The procedure SUCCESS (Figure 27) simply asks the user whether
the extrapolated next term is acceptable and outputs "TRUE" or
"FALSE" accordingly. The last procedure in the set, CONTINUE,
is called by the user after he inputs a new extrapolation procedure.
CONTINUE asks for the name of the new procedure, uses CHECK to
check its correctness on the given user sequence. If it is
correct, it is added to the list of extrapolation procedures.

At this point CONTINUE, as the most rccently defined procedure,
is displayed in mini-print at the lower left of the display.

Report No. 2625 Bolt Beranek and Newman Inc.

Figure 28 shows the beginning of the student's execution of
these procedures. The analyst begins reviewing the student's work
with a $DOALL. Immediately a difficulty appears. The exccution
of line ***53**% (which calls CASSANDRA to start the system)
requires the user of the system to provide an input. CASSANDRA
types SEQUENCE?... and waits for the user to type in a sequence.
What is the analyst to do at this point? le has two options -~
he can provide his own input or he can replicate the input used
by the student in the next line of the ‘dribble file. The analyst
probably wants to see the student's input, even if he decides to
usc a different one.

Thus, it is valuable for the analyst to have a facility for
looking ahead in the dribble file to see the student's inputs on
the next line (or lines if a multi-line input chain is involved).
During this look-ahead process, execution should be suspended
until the analyst has previewed as many lines as he wishes to see.
And he should be able to indicate which of these student input
lines he will want to be ignored during the subsequent execution
(bécause, for example, he wishes to replace these with his own
inputs).

Following the exemplars of uscr-defined analysis procedures
described in Part 3, the analyst of this example has written such
a lookahead procedure, called $LOOKAHEAD. The procedure is shown
and discussed later; first we illustrate its use in the subsequent
analysis. To suspend operation of the dribble file exccution the
analyst types BREAK (on line 4 of Figure 28). LOGO responds (I
WAS AT LINE 2§ IN CASSANDRA) and the analyst invokes the lookahecad
procedure by typing $LOOKAHEAD.

Report No. 2625 Bolt Beranck and Newman Inc.

The procedure asks the analyst if he wishes to look ahead to

the next line (MORE?...). He responds with YES, The procedure
then types dribble file lino ***54*** (prefixed with [[[[[to
indicate that it is a previewed line). This line is the student's

input sequence 1 2 3 4. The procedure then asks whether this line
is to be ignored during subsequent exccution (IGNORE?...). The
analyst responds YES. He is then asked whether he wants to look
ahead to the next line (MORE?..,). He responds YES and is shown
line ***S55*** (which is the title line of the procedure ADDl, an
extrapolation procedure being defined by the student). The
analyst indicates that he does not wish to ignore this line,
Then he responds NO to MORE?..., since he does not wish to look
ahead any more at this point. $LOOKAHEAD then types **RESUME

AT ***53%** and continues processing there, at the point where
it had left off before.

In response to SEQUENCE?... the analyst types 1 2 3 4, The
program then asks for the definition of a procedure that gencrates
that sequence (I CAN'T DO THAT ONE ...). The analyst invokes the
next several lines of the dribble file, with a $DOALL. This
enters the student's extrapolation procedure ADD1, and then invokes
(line ***59***) the procedure CONTINUE, which asks its user for
an input (WHAT IS THE NAME OF YOUR NEW PROCEDURE ?) .

At this point the analyst types BREAK to interrupt processing
and calls $LOOKAHEAD to preview the next two lines in the file.
These lines enter the name of the student's extrapolatlon proceduxe
(ADD1) and ask for the list of student extrapolatlon procecdures
(PRINT :PROCEDURE BANK:) . The analyst then resures execution
with a $DOALL, and executes the dribble file through line
¥*¥*¥62*** which calls CASSANDRA. After CASSANDRA's request for

the input of a sequence, the analyst once more BREAK's (end of
Figure 28),

Report No. 2625 Bolt Beranek and Newman Inc.

As shown in Figures 29 and 30, he carries on the analysis
of the student's work in this fashion using $LOOKAHEAD extensively,
throughout the rest of the dribble file.

Figure 29 shows the student's trial of CASSANDRA with the
sequences 1117 1118 1119 and 1 11 111 1111 and his definition of
another extrapolation procedure, TAGl. Figure 30 shows a later
portion of the dribble file, by which time the extrapolation
procedures ADD1, TAGl, TAGLAST, and TIMES2 have been introduced
(line ***95***)., The last few lines show the student input of
the sequence 1 2, his rejection of the extrapolated next term 3
(which was generated by the extrapolation procedure ADD1), and
his acceptance of the extrapolated next term 4 (gencrated by the
procedure TIMES2),

The procedure $LOOKAHLEAD, and its main subprocedures are
listed in Figure 31. These are very transparent procedures.
$LOOKAHEAD]1 :N: processes the :N:th line ahead of the current one.
If this line is not to be previewed (a negative response to
MORE?...), the lookahead process is terminated, and execution is
resumed at the point where lookahcad started (after spacing two
blank lines with §SKIP 2 to set off the interrupted execution
lines). If this line is to be previewed, it is displayed by
$DISP. If it is to be ignored during subsequent exccution, the
comment "IGNORE" is appended (using $ADD) to the contents of
“(dribble no) D" (which denotes a fatal error, as described in

the section of the User's Guide dealing with parsing).

Figures 32 and 33 show the last part of the analysis. At
the top of Figure 32 the analyst exccutes a $WHERE to list all
the procecdurcs defined at the end of the student's session. The
analyst then invokes $ALLDESCR to list all the descriptors used

Report No. 2625 Bolt Beranek and Newman Inc.

in the dribble file lines -- these have previously been centered

in (dribble no) "B". The system responds with the single
descriptor RECURSIVE. The analyst then executes $FINDLINES 1
"RECURSIVE" to list all lines, starting with line I, which contain
that descriptor. The system prints out the associated lines --
18, 27, 32, and 56. The analyst next prints "RECURSIVE LIST: to
list all recursive procedures. These are CHECK, SCAN, and ADDI.

It is interesting to note that ADD]1 is listed as recursive
because of a lack of sophistication in the procedure $EXAMINEEL
that generates the RECURSIVE descriptor. In dribble file line
¥**56*** the ADD1 title line was changed from TO ADD1 to
TO ADD1 :N:. SEXAMINEEL simply sees the repeat of the procedure
name ADD]1 in thkis line, failing to observe that this line
supplants the original title 1line.

The blank procedure forms $EXAMINEEL are filled in by the
analyst to test whether a line is rccursing and, if so, to label
it with the descriptor "RECURSIVE". The blank procedure form
$NICEP is filled in by the analyst to search (dribble no) "B"
déscriptor lines for the descriptor '"RECURSIVE" and to enter the
names of procedures having such lines on "RECURSIVE LIST:. These
procedures, along with the blank procedure form $NOTE, are listed
in Figure 32,

$NOTE is filled in by the analyst to modify the display
names of* ‘recursive procedures by prefixing and suffixing them
with **, With this modification, procedure structure diagrams
explicitlf label their recursive components. In Figure 33 the
analyst has displayed the structures CASSANDRA and CONTINUE.
These diagrams clearly show that the proceduycs SCAN and CHECK
are recursive.

A

4-41

Report No. 20625 Bolt Beranck and Newman Inc,

eve 2 ¢¢0 10 COASSANDRA

eed 3 o0e 0 TYPE “ SEQUENCE?..., “

o0 4 20¢ 20 HAXE ¥ SEQUENCE “ REQUES!

$%% 5 494 30 PRINT : EMPTY

€60 6 ooe 4O TEST SCAN OF : SEQUENCE : AND : PROCEDURE DANK

¥4¢ 7 w4y 50 JFTIRUE STOP

ook 3 ovd GO PRINT ™ | CAN'T DO THAT OKE, TELL ME HOW TO0 DO 1Y (BY

DEFIHING A PROCEDURE FOR GEHERATING THE SEQUENCE) . HHEN YOU'RE DONE
PLEASE TYPE 'CONTINUE',

tet 9 see END

¢¢0 10 o0e TO EXECUTE : PROCEDURE : AND : IKPUT

*¢¢ 14 o¢e 10 DO SENTENCE OF “ OUTPUT “ AND (SENTENCE OF : PROCEDURE :
AND : [HPUY ¢)

$9¢ 12 00 END

¢4¢ 13 w00 TO CHECK : PROCEDURE : AND : SEQUENCE
*0¢ L4 400 10 TEST ENPTYP OF BUIFIRSY OF : SEQUENCE :
44 15 ¥y 20 IFTRUE OUTPYUY * TRUE *

$4¢ 16 ¢4¢ 30 TEST IS ¢ SECOND OF : SEQUENCE :) EXECUTE OF
¢ AND C FIRST OF : SEQUENCE :)

64 17 40e 40 JFFALSE OUTPUT ~ FALSE *

*¢¢ 18 o40 SO OUTPUT CHECK OF : PROCEDURE : AND (BUTFIRST OF : SEQUENCE
¢)

00 19 ¥es END

64 20 «0¢ TO SECOND : LIST

#6021 w00 10 OUTPUT FIPST OF BUTFIRST OF : L1ST .

Y56 22 430 EYD

06 23 ove TO SCAN : SEQUENMCE : AND : PROCEDURES

$0¢ 24 eo0 10 TEST EHPTYP OF : PPOCLOURES

68 25 woy 20 IFTRYUE GuTPYT ~ FALSE

$¢% 26 oo¢ 30 TEST CHECY OF (FIRSY OF : PPOCEDURES :) AND : SEQUENCE :
€48 27 oes 40 LFFALSE CUTPUT SCAN OF : SEQUENCE : AND (BUTTIRST OF
PROCEDURES :)

#0028 oos 58 MAKE ¥ NEXT TERM v EXECUTE OF ¢ FIRST OF : PROCEDURES :)
AND C LAST OF : SEQUENCE :)

%6 29 w00 60 TEST SUCCESS OF ; MEXT TERM

¢¢¢ 30 %% 70 |FTRUE PRINT SENTENCE ™ IHE HINNTHG PROCEDURE HAS * (
FIRST OF : PROCEDURES :)

¥¢s 31 499 80 IFTRUE OUTPUT “ TRUE ™ ‘
€60 32 040 90 GUTPUT SCAN OF : SEQUENCE : AND (BUTFIRSY OF : PROCEDURES
:)

*¢¢ 33 000 END

¢ PROCEDURE

Figure 26.

Report No. 2625 Bolt Beranck and Newman Inc,

¥4 34 440 TO SUCCESS : TERH

$¢¢ 35 #4¢ $0 TVPE SENTENCES * 1S THE HEXT TERH * 1 TERM ¢ " ¢
#4436 w44 20 HAYE * ANSHER " REQUEST

¥4 37 oo 20 TESY IS : ANSHER ; ¢ ffS "

#6438 eod O IFTRUE QuTPLT » Touf -

$44% 39 06 50 OUTPUY ¥ TALSE -

k66 4O 440 END

#4441 444 T0 CONTINUE

404 H2 #4¢ 10 TYPE * HHAT [S THE NAWE OF YOUR NEH PROCEDURE? *

t4¢ 43 4¥¢ 20 MAKE " NEW PROCEDURE * REGQUES?

44 R4 e%¢ 30 PRINT : EHPTY .

48 45 #4¢ G0 TEST CHECK OF : NEIt PROCEDURE : AND : SEQUENCE

¥44 46 044 SO IFFALSE PRINT SENTENCES * NO, " : NEW PROCEDURE : * DOES
HOT GENERATE THE SEQUCHCE THAT YOU GAVE ME, TRY YOUR PROCEDURE ON
SUCCESSIVE TERMS aAND YOU HILL SEE THAT 1T DOESN'T HORK, *

k66 47 o4¢4 GO IFTRUE MAKE * PROCEDURE BANK * SENTENCE OF : PROCEDURE
BANK : AND : NEH PROCEDURE

$¢% 48 s¢¢ 70 [FTRUE PRINT " THANVS FOR THE NEW RULE, *

e¢D0L INE

$¢¢ 49 o¥¢ END

*
L]

T Chatleg
19 g« SIAL (8 g eeg €7 £ ADN PIOCI Rt
[E L0 ISR AU | LR e8¢ 1]
[AEH U ALY
A9 1031 0TI € gty 2NN e ierath
€xgi iy ”! t’ R AR T IR L i 13 ¢22000E 1Y U CATE K3, 109 1058 PESSEOUaS OF Gwcciasivg t3nch €33 104

13 WIS B 23y JU/ FPag S8 LN S Rbls | (J e lLIRAE oty 6 SN KA
;I'IHBJ HIIT "L.-ll R P VR

Figure 27,

Reoport No. 20625 Bolt Beranok and Nowman

«IDOALL

$e0 52 evy CASSAUDRA
SEQUENCE?, .,

BREAY

I HAS AT LINE 20 1N CASSANDRA
4L 00K AKEND
HORE?, .. YES

CECCCoew 54 coe 3 2 3 4
1GNORE?, .. YES
HORE?...YES

(LEtione S5 ses 10 ADDY
{GHORET, . O
HORE?D. ., . 1O

YARESUNE ATave 53 was

SEQUEHCE?...1 2 3 &4

Inc,

1 CAN'T DO THAT ONE, TELL ME KO TO DO IT (BY DEFINING A PROCEOURE FOR

GENERATING THE SEQUENCE) . wmEN YOU'RL DONE PLEASE TYPE *CONTINUE Y,
«$00ALL -
$¢¥ 55 4ty 10 ADDY

#¢% S5C «v% TITLE 10 ADDY ¢ H

44 57 vy § OUTPUT ¢ o0 g

kv% 5% ¥y E1D

¥4¥ 58 vt CONTINUE

HHAT 1S THE NANE OF YOUR NEN PROCLDUPE?
BREAY

I HAS AT LINE 20 IH CONTINUE
+4LOOKAHEND

HORE?...Y

(CLLCevs 60 o9¢ ADDY

JGHORE?. . .Y

HORE?...Y

(CECLese 61 9% PRINT : PROCEDURE DANK
JIGNORE?. . . N

HORE?...H

CORESUNE AToed 59 ooy

HHAT 1S THE NAHE OF YOUR NEW PROCEDURE?AODY

THANY.S FOR THE HEH RULE.

+4DOALL

$4% 61 #¥& PRINT : PROCEDUPE Baklr
Bl

4% G2 %&s CASSANDRA

SEQUINCE?. .,

grEax

I HAS AT LINE -20 [N CASSANDRA

Figure 28,

4-44

Report No. 20625 | Bolt Beranck and Nowman Inc.

teL007NAHEAD

HORE?.. .Y

(CCllees 63 #59 $117 1188 1119
1GHORE?.. .Y

MOPE?., .Y

(0o G4 w49 YES
1GHNORE?. . . ¥

HORE?. ., ¥

CCLLLoa® GS wov CASSANDRA
1GLORE?. . . H :
HORE?.. .M

YORESUNE ATo4y 62 44y

SEQUENCE?...1 2 3 4,

16 THE MEXY TERH % ?YES

THE WINNING PROCEDURE HAS ADD1
+¢DCALL

¥¢e 65 ¢vv CASSANDRA
SEQUENCE?. ..

BREAK

I HAS AT LINE 20 1u CRSSANDPA
«3L00KAHEARD

HORE?...Y

CCtIf{sve 66 4o § 81 $1% 30114
IGHORE?. . .Y

HORE?...Y .
({L{Co¢s 67 o8¢ TO TRGY : N :
IGLORE?. . . N

Horeer.. . N

$4RESUME ATeas 65 #44

SEQUENCE?...1 11 111 1111

I CAN'T DO THAT OHE. TELL ME HOW T0 0O IT ¢ By DEFINING A PROCEDURE FGR
GENEPATING THE SEQUENCE) . HHEN YOU'PE DONE PLEASE TYPE 'CONTINUE'.
«300nLL ,
21 67! 4% 10 1IAGL : N .
* 444 68 444 1 OUTPUT LIORD OF : N : AND 1
4% 69 #44 END
¥4 70 %44 CONTINUE
HHAT 1S THE HAME OF YOUR NEH PROCEOURE?,

Figure 29,

Report No. 20625 Bolt Beranek and Newman Inc.

+4D0ALL

¥6e 05 w4y PRINT : PROCLOUPE BANY
ADDY TAGL TAGLAST TINES?

Ye8 05 4k4 CASSANDRA

SEQUENCE?., .,

prEAK

I EAS AT LINE 20 JH CASSANDRA

4L OCKAHEND

. . Al
’ ‘ '
’ . ’

CORESUME AToee 08 ¢4 ¢

SEQUENCE?...¢9 198 396

IS THE NEXY YERH 792 ?YES
THE WINNING PROCEDURE HAS TIMES?
+$DO0ALL
46 09 444 CASSANDRA
SEQUENCE?. ..
BREAK
1 HAS AT LINE 20 IN CASSAKDRA
$L+«00OKAHEAD
MORE?...Y
(CLlCoce 100 #we § 2
IGNORE?, . .Y
HORE?...Y
TLLCEa%y 101 vww YO
IGHORE?, . .Y
HORE?...Y
(LL0{44% 102 ve¢ YES
1GMORE?, . . ¥
BORE?...Y -
flCLLsss 103 ¢4+ SAQVE CASS2 CASS2
1GHORE?. . N '
HORE?...N
$$RESUME ATH9¢ 99 sy

SEQUENCE?,..1 2

IS THE HEXY TERH 3 ?2HO

1S THE NEXT YERHM 4 ?YES

THE HIMMING PROCEDURE UAS TINES2
+«400ALL

6k 104 e4¢ SERASEALL

€0k 105 e

$6e4END-OF~FILESVO 4

‘.

Figure 30.

4-46

Report No. 2625 Bolt Beranck and Newman Inc,

«L1ST 6LOOKAKEAD

TO ¢LOOKAHERD
10 ILOOKAHEADY 8
END

«LIST ¢LOOYANEADY

T0 OLOOKAKEADL M.

10 TYPE “HORE?..."

20 TEST 6YESP REQUES!

30 IFFALSE PRINT SENTENCES “weRESUME ATews® :DRIBDLE NO: “$44*
40 IFFALSE eSKiIP 2

SO IFFALSE DO THING SEMTENCE :ORIBILE HO: “N®

60 IFFALSE sTOP

70 TNPE CLCCLQ”

80 sDISP SUH :DRIBBLE HO: th:

90 TYPE “[GNORE?.

1C0 17 ¢YESP REQUE ST 3000 SENTENCE Sun :DRIBHLE NO: :H: “D* “IGHORE"
110 SLOCKAHEADL SUM :: 1

END

«LISTY oYESP

T0 SYESP :AUS:

10 IF IS :nNS: Y™ OUTPUT “TRUE™
20 IF 1S :aNS: “YES™ QUTPUT “TPyL*
30 OUTPUT *FaLSE"

gND

«L 18T 6400
10 ¢nDD :PLACE: :NES:

10 UAKE :PLACE: SENTENCE THING :PLACE: :HES:
END

Figure 31.

Q 4

47

Report No. 2625 Bolt Beranek and Newman lnc,

¢VHHERE
AT ORIDDLE LIKE 105
HHICH 1S

THE PROCEDURES CASSANDRA EXECUTE CHECK SECOND SCAN SUCCESS CONTINUEn
TAGL TAGLAST TIMES2 HAVE BEEN OEF IKED

+EALLDESCR

RECURSIVE :

C4F[NOLINES 1 “RECURS|VE" ‘

RECURSIVE [t 18 --- 50 OUTPUY CKECK OF : PROCEDURE : AND ¢ BUTFIRSY OF
SEQUENCE :) ;

RECUNSIVE IN 27 --- 40 IFFALSE OUTPUT SCAN OF : SEQUENCE : AND ¢
BUTFIRST OF : PROCEOURES :)

RECURSIVE IN 32 --- 90 OUTPUT SCAN OF : SEQUENCE : AND (BUTFIRST OF
PROCEDURES :)

RECURSIVE IN 56 ==~ TITLE 10 ADD& i N

PRINT RECURSIVE LIST:
* CHECK SCAN ADD1

*.

+LIST $EXAHINEEL

10 $EXAHINEEL ‘

10 IF NOT IS FIRSY :CURRENT LINE: :CURRENT PROC: $TOP

20 IF NOT eMP “RECURSIVE™ THIMG SEHTENCE :ORIBBLE WO: "B ¢ADD SENTENCE
:DRIBBLE HO: “B* “RECURSIVE"

END

'

¢,

«LIST SNOTE
T0 ¢HOTE :PROC:
10 IF ¢RECURSEP :PROC; OQUTPUT LORD HORD “#9" :PROC: “44"

20 OUTPUT :PROC:
END

+LIST eNiCEP

T0 eNICEP

18 1F oHP “RECURSIVE® THING SENTENCE :DRIBBLL HO: “B* MAKE *RECURSIVE
LISTY SUNION :CURRENT PROCEDURE: :RECURSIVE LIST:

20 OUTPUT “TRUE™

END

Figure 32.

Report No. 2625 Bolt Beranek and Nowman Inc,

43159 0A "CASSANDPRY

[}
.

uM;s-

CASSANDRA
ﬂ,//JE?;‘ **GCAN * *
:f
[edinn] fﬁm£]succuss **CHECK * * EXECUTE
SECOND

* DS LAY YCONT I huE"

[
.

CONTINUE

** CHECK **

EXECUTE SECOND

Figure 33,

Q 4-49

APPENDIX A

LOGO REFERENCE MANUAL

}. A Look at LOGO

We introduce LOGO by writing several small procedures. The
followlng examples serve to show what LOGO "looks 1like'". Several
features are used without definition or even ¢xplanation, where
we think their meanings are clear from context. All of LOGO is
comprehensively described in later sections.

LOGO, as an interpretive language, can execute single commands
directly. Thus,

+«PRINT SUM OF 2 AND 2 (The user's typing is underlined)
4

But, the most important feature of LOGO i1s that such commands
can be incorporated in user-written procedures. The definition
of any procedure results in an object which is treated just 1like
any primitive. Thus, in a very real sense, as the user writes
his own procedures, he 1s gradually extending the basic language
to more exactly fill his needs.

A very simple (although by no means simplest) procedure, for
example, prints the double of its input.

TO DOUBLE /N/

1§ PRINT SUM OF /N/ AND /N/
END

This procedure, DOUBLE, 1s now "part" of LOGO.

+DOUBLE 123

246

+DOUBLE WORD OF 1 AND 1
22

If the concatenation of DOUBLE with other procedures is desired,
DOUBLE should OUTPUT rather than PRINT its results; OUTPUT mean-

ing that the result is given to the calling procedure. The
modified procedure is:

TO DOUBLE /N/

14 OUTPUT SUM OF /N/ AND /N/
END

This new version of DOUBLE can be used in direct commands,

+«PRINT DOUBLE DOUBLE DOUBLE 3
24

or can be used as the basis for other procedures,

TO QUADRUPLE /N/
1§ OUTPUT DOUBLE OF DOUBLE OF /N/
END

and so on. This very natural use of functions in LOGO is partic-
ularly valuable, since to program a problem a user can keep on
breaking it up until he sees subproblems which he feels will be
easy to program. This heuristic 1is used by sophisticated

problem-solvers generally, whether or not computer programming
is involved.

An extension of this LOGO facility for using procedures in
defining other procedures is its ability to handle recursive
procedure definitions. The recursion can be a linear one, which
1s equivalent to iteration, as 1in the following procedure which
calculates the factorial function: n! En » (n=1) *+* 2°'1.

TO FACTORIAL /NUMBER/
14 TEST IS /NUMBER/ 1

2¢ IF TRUE OUTPUT 1 (1! = 1)
39 OUTPUT PRODUCT OF /NUMBER/ AND
(FACTORIAL OF DIFFERENCE OF (n! =n « (n-1)1)

/NUMBER/ AND 1)
END

+PRINT FACTORIAL OF 144
933262154439441526816992388562667¢p49671596826438162146859296389521
759999322991560#8941463976156518286253697920827223758251185210916864
gapppeppppspgpigeggdssg

LOGO makes few distinctions between numbers and more general types

of string. Thus, a procedure to reverse a string looks very much
like FACTORIAL.

T0 REVERSE /STRING/
19 TEST IS /STRING/ /EMPTY/ (The reverse of the empty string
2¢ 1F TRUE OUTPUT /EMPTY/ is the empty string.)
3% OUTPUT WORD OF LAST OF /STRING/(The reverse of the nonempty
AND (REVERSE OF BUTLAST OF string is the string formed by

/STRING/) following the last character by
END the reverse of the rest of the
string.)
("AND', "OF'", and parentheses are optional 'noise words'" for

convenience in writing expressions.)

«PRINT REVERSE OF '"UABBERWOCKY"
YKCOWREBBAJ

2. The LOGO Language
2.0 Mechanics

To start using LOGO, a person must establish communication with
the computer and specify that he wishes to work with LOGO. The
conventions for doing this vary from system to system and are,
therefore, outside the bounds of this manual.

To irdicate that 1t is ready for use, LOGO types a back-arrow (+)
elther immediately or in response to the pressing of the key
labeled "RETURN". This means that LOGO is ready to receive an
Instruction line. After the user types in the desired line, he
agaln presses the RETURN key. This action returns the carriage
and gives the command line to LOGO for execution. The LINE FEED
key also returns the carriage, but does not cause command execu-
tion; thus an arbitrarily long instruction can be entered.

The typing of a line may be aborted at any time by pressing the
key labeled "RUB OuT".

The key labeled "BREAK" 1s used to stop the execution of the
current instruction and return control to the user. ’

The use of LOGO 1is terninated by typing the command "GOODBYE" or
lts abbreviation "GB".

Other LOGO system facilities, such as erasing, editing, ana
filing, are discussed in the section on program manipulation.

2.1 LOGO Objects and the PRINT Command

LOGO contains two kinds of objects, LOGO words and LOGO sentences.
A LOGO word 1s an arbitrary string of printing teletype charac-
ters excluding quote marks. A LOGO sentence is an arbitrary
string of LOGO words, separated by spaces. If a user types
multiple spaces between words of a LOGO sentence, all but one

are automatically eliminated.

To simply print a LOGO object on the teletype, the PRINT command

is used.

“PRINT MY ! {RCHNGLK! {a LOGO word)
Y1 IRCHNGLK

+«PRINT "32425!" {a LOGO word)
32425

+PRINT "HI THERE LOGO" (a LOGO sentence)
HI THERE LOGO

«PRINT "M (the "empty" object)
(prints out an empty line)

+

LOGO objects are delimited by quote marks. -If a word is not so
delimited, 1t is taken as a LOGO command or operation, Integer
objects are an exception -~ for these, quotes are optional,

+«PRINT 123454
123459

2.2 (Constructing a Procedure

Using the "bullt-in" LOGO commands and operations, such as PRINT,
we construct procedures elther to manipulate LOGO objects or to
produce some desired external effects. For example, a LOGO
procedure for drawing a small triangle out of + marks 1is:

+TQO TRIANGLE

>5 PRINT "4V

>1f PRINT '"4+4"
>32 PRINT "+++"
>4F PRINT 4444
>END

<

To get LOGO to perform this procedure, we merely type the proce-
dure name:

«<TRIANGLE
+

++

4+

4
<&

A procedure definition includes three different kinds of 1lines.
The first line of the definition is called the title line. It
begins with the LOGO command T0 which indicates to LOGO that we
are writing a procedure whose name immediately follows. (TO is
not part of the procedure name.) The procedure name must not be
a command or operation currently used by LOGO. (This excludes
built-in commands like PRINT as well as user-defined procedures
in the current workspace.) And, like the LOGO built-in commands
and operations, procedure names must not contain quotes or
slashes.

I

After reading the title line, LOGO types back the wedge mark (>),
This indicates that 1t is ready for the next iine of the defini-
tion. The actions of the procedvre are specified by the instruc-
tion lines lmmediately following the title line. Each of these
1s prefaced by an integer, a line number. Following the line
number 1s the instruction itself, such as a LOGO command. The
Instructions are not executed during this definition phase ==
they are merely entered, checked for local syntax errors, and
stored away for subsequent execution, Later, when the procedure
is to be performed, LOGO will execute these instruction lines in
increasing order, by line number, even if they are not set down
in such order. The END line indicates the close of the definition,

2.3 Procedures With Inputs

The procedure TRIANGLE always has the same effect. This contrasts
with the bullt-in PRINT command whose effect varies with 1its
input. As well as procedures with no inputs, like TRIANGLE, we

can write procedures that have inputs, for example the following
one:

TO PSYCH /ANYTHING/

18 PRINT “WHY DO YOU SAY"
28 PRINT /ANYTHING/

3 PRINT "2"

END

To use PSYCH, we must glive 1t, one input:

+PSYCH "YOUR NAME IS ELIZA"
WHY DO YOU SAY

YOUR NAME IS ELIZA

?

+

+PSYCH '2+2=4"
WHY DO YOU SAY
2+2=4

?

+

By adding a word or sentence enclosed within slashes -- a place-
holder or dummy input -- to its title 1line, we denote that PSYCH
requlires one input. When PSYCH 1s used, LOGO replaces the dummy
input, wherever 1t occurs in the procedure definition, by the
desired input (such as "2+2=4"),

4

We write and use procedures with more than one input along
analogous lines. For example:

" "TO..REVERSE /FIRST/ /SECOND/ /THIRD/
19 PRINT /THIRD/
28 PRINT /SECOND/
38 PRINT /FIRST/
END

REVERSE needs three inputs.

+REVERSE HAII HBII Hclf
C
B
A

+REVERSE "ABC!
THERE ARE 2 INPUTS MISSING FOR REVERSE

<

In the second example, we typed only one input. (When an 1llegal
instruction 1is attempted, LOGO responds with an appropriate error
message. A list of such messages 1s included in Section 3.5.)

2.4 LOGO Operations

A LOGO command (such as PRINT, TO, END, and GOODBYE) always results
in some external action. For example, PRINT causes its input to

be printed on the teletype. An operation, however, passes on a
LOGO object for further use within LOGO. For example, the LOGO
operation SUM requires two inputs (integers), and outputs their
sum. Thils new object can either be used as an input for PRINT,

if we wish to have it typed, or as an input to a LOGO operation

or procedure. '

+«PRINT PRODUCT OF 2 AND 7

14

«PRINT PRODUCT OF 2 AND (SUM OF 3 AND &)
14

<

Here, the output of SUM, 7, 1s one of the two inputs to the opera-
tion PRODUCT which, in turn, passes its output, 14, to PRINT.

{OF and AND are completely optional and are used only to improve
clarity and readability of expressions for the user. OF may be
used after any command, operation, or procedure name. AND may be
used between inputs. Balanced parentheses also may be used to
improve readability. (See the section following on composition.)]

-6~

LOGO includes operations of different kinds, for example, those
for concatenation and decomposition given below.

Concatenation

WORD concatenates two given words, its inputs, to form a new word
as 1its output. SENTENCE concatenates its two inputs, either
words or sentences, to form a new sentence as 1i4s output,,

+PRINT WORD OF "UP'" AND ''DOWN"

UPDOWN

*PRINT_SENTENCE OF "UP" AND ''DOWN'
UP DOWN

+PRINT SENTENCE OF "GO MAN'" AND '"go"
GO MAN GO

+PRINT WORD OF 'GO MAN" AND '"GO" :
THE INPUTS TO WORD MUST NOT BE SENTENCES

<

Decomposition

FIRST outputs the first character of its input, if the input is

a word (or the first word, if the input is a sentence). BUTFIRST
outputs everything but the first of its input (i.e., the second-
through~last characters of word inputs, or the second-through-
last words of sentence inputs). LAST and BUTLAST are defined
similarly.

«PRINT FIRST OF "CAT"

EPRINT BUTFIRST OF '"CAT"

ﬁ;RINT LAST_OF "'CAT"

IPRINT BUTLAST OF "CAT"

EgRINT FIRST OF "FEE FIE FOE FUM"
EEEINT BUTFIRST OF "FEE FIE FQE FUM"
FIE FOE FUM

+PRINT LAST OF "A"

ﬁPR!NT BUTLAST OF MAM

<%
5

(LOGO prints the empty word)

<

The output of FIRST or LAST is always a LOGO word. The output
of BUTFIRST or BUTLAST, however, is of the same type (i.e., LOGO
word or sentence) as its input. This means that a single word
can sometimes be a LOGO sentence. Thus, the output of BUTFIRST
OF "THE CAT" is the LOGO one-word sentence "CAT",

+PRINT FIRST OF BUTFIRST OF "THE CAT"
CAT

<+

Arithmetic

The operations SUM, DIFFERENCE, PRODUCT, and QUOTIENT take two
inputs, which must be integers, and output the designated arith-
metic result. The operation RANDOM has no input and outputs a
digit between 0 and 9 generated in a pseudo-random manner.

«PRINT_SUM OF 2 AND 98

1¢¢

+PRINT DIFFERENCE OF 2 AND 98
~96

“«PRINT PRODUCT OF 17 AND 5

8s

“PRINT QUOTIENT OF 17 AND 5

3 {the integer quotient)
+PRINT RANDOM

8

<PRINT RANDOM

2

<

Other LOGO "built-in" operations are described later.

2.5 Composition

The inputs of LOGO operations do not have to be literal LOGO
objects like "CAT" or "39"., 1Instead, as we saw, they may be
outputs of other operations. The following examples illustrate
how operations can be composed or '"chained".

+PRINT SENTENCE OF "A B" AND WORD OF ''CD'" AND "Et

A 8 CDE

+«PRINT LAST OF (FIRST OF "“"THE CAT'")

e ‘ 1he

«PRINT DIFFERENCE OF (WORD OF 11 AND 22) AND 122
1798

“+

Let's consider how LOGO scans and executes these composite Instruc-
tions by considering the first example above, LOGO scans an
instruction line word-by-word from left to right. During the

scanning process it identifies each element and notes its type.
Thus:

ELEMENT TYPE
(1) PRINT Command, needs one input
(2) SENTENCE Operation, needs two inputs
(3) oF "Noise" word
(4) ""a " LOGO sentence literal A
(5) AND Noise word A
(6) WORD Operation, needs two inputs
(7) O©OF Noise word
(8) vcp" LOGO word literal
(9) AND Noise word
(1g) “e" LOGO word literal

After the Input iine 1s scanned, LOGO returns to the beginning
of the line and executes it as follows:

(1) Fetch the first element PRINT., Its one input remains to be
found: fetch the next element.

(2) PRINT's one input will be the output of SENTENCE. SENTENCE,
in turn, needs two inpufts: fetch the next element.

(3) OF is a noise word, legal in this context. Ignore it.
We are still looking for two inputs.

(4) "A B" is an acceptable first input for SENTENCE. The second
input needs to be found for SENTENCE: fetch the next element.

(5) AND is a noise word, legal in this context. Ignore 1it.
One input remains to be found for SENTENCE.

(6) SENTENCE's second input will be the output of WORD. WORD,

in turn, needs two inputs -~ LOGO words: fetch the next
element,

(7) OF 1is a noise word, legal here. Ignore it. We are still
looking for two inputs for WORD.

(8) "CD" is an acceptable first input for WORD: fetch the next
element.

{(9) AND 1is a noise word, legal here. Ignore 1t. We are still
looking for the second input for WORD,

(10) "E" 3s an acceptable second input for WORD. There are no
furti.er inputs being sought.

(11) WORD outputs "CDE" to SENTENCE as its second 1nput.
(12) SENTENCE outputs "A B CDE" to PRINT as its one input.
(13) PRINT causes A B CDE to be printed on the teletype page.

(14) The processing of the line is complete. LOGO returns
control to the user.

This process can be regarded perhaps more conveniently as a
successive simplification of the original 1line as the outputs of
various operations are determined. As an illustration, consider
the following example:

+«PRINT PRODUCT OF SUM OF 2 AND 3 AND DIFFERENCE OF 4 AND 5 AND 6

Unlike before, we immediately remove all noise words, thus
obtaining:

«PRINT PRODUCT SUM 2 3 DIFFERENCE 4 5 6

We again go word-by-word from left to right. Finding upon reach-
ing the 3 that we can complete the execution of SUM, we do so,
obtaining:

«PRINT PRODUCT 5 DIFFERENCE & 5 6

This execution of SUM does not permit any previously encountered
operations to be executed so we keep on going to the right. We
find that we can next complete the execution of DIFFERENCE. .
Doing this, we obtain:

+«PRINT PRODUCT 5 -1 6

Again, looking back at previously encountered operations, we find
that PRODUCT can now be executed. This results in:

«PRINT -5 6

Looking back once more, i'e find we can execute PRINT. We do so,
thereby obtaining the printout -5. Since the first command on
the original line has been executed, we deem the execution of
the line to be complete. There ic, however, something remaining
on the line and this causes LOGO to print the error message:

"6" IS EXTRA

LOGO then returns contrcl to the user.

-10-

Parentheses

Parentheses may be used in instructions to set off any expression

that is, or can be used as, a LOGO input, The following examples
of such use are valid:

«PRINT suM (2) 3
«PRINT SUM 2 (3)
«PRINT (SUM 2 3)
+«(PRINT SUM 2 3D

All these instructions cause the printout 5,

The following examples show some invalid uses of parentheses.

“PRINT (SUM) 2 3
“PRINT (SUM 2) 3
“PRINT SUM (2 3)

None of the above parenthesized expressions are meaningful LOGO
inputs. The attempted execution of these lines will cause LOGO
to print error messages such as MATCHING (? and MISSING)?.

Two infix expressions such as
2 + (3 X 4) and (2 + 3) X 4

whose operations and inputs occur in the same order, but which
are differently parenthesized, yield different results. Thus,
the use of parentheses can change the order of evaluation of
infix expressions. This 1s not so with LOGO prefix expressions.
So long as parentheses are used correctly -- that 1s, to enclose
inputs or possible inputs -~ they cannot change the result of
evaluating any LOGO prefix expression.

Cet

§

2.6 Procedures With Qutputs

LOGO operations, by definition, output when they are executed.
LOGO procedures can be written which output in Just the same way
as operations. To do this, the one-input LOGO command OUTPUT

is used. Its use 1s illustrated:

TO DUBBLE /SOMETHING/

19 OUTPUT WORD OF /SOMETHING/ AND /SOMETHING/
END

«PRINT DUBBLE "TROUBLE"
TROUBLE TROUBLE

-11-

Note that, as in the case of buillt-in operaticns 1like FIRST or
SUM, we need to preface DUBBLE with PRINT to cause the output
of DUBBLE to be typed. In line 18 of DUBBLE, OUTPUT causes the
resu’t of execution of its line to "be passed.back as an input
to the PRINT command which called DUBBLE. The LOGO command
OUTPUT takes a single input and passes this back as an input to
the command, operation, or procedure which called the present
procedure. OUTPUT then causes resumption of the execution of
the line to which 1t returned its input. At this point the
outputting vrocedure effectively vanishes. Clearly, the command
OUTPUT can only be used within a procedure.

User-defined procedures which output can be composed in the same
way as bullt-in operations, Thus:

“«PRINT SUM OF DUBBLE 3 AND 4

37

+PRINT DUBBLE DUBBLE DUBBLE "B"
BBBBBBBA

«70 QUADRUBBLE /STUFF/

>1§ OUTPUT DUBBLE OF DUBBLE OF /STUFF/
>28 PRINT "1 AM ALL DONE"

>END

QUADRUBBLE DEFINED

+«PRINT QUADRUBBLE OF '"NO"

NONONONO

‘n the last example note that the command in line 28 was not

executed. The OUTPUT in line 19 terminated {he execution of
«UADRUBBLE as 1t passed tack "NONONONO" to PRINT. Thus we now
have two means of terminating a procedure, either by

the END cormand or the QUTPUT command.

2.7 Naming

ol ¢
agle

~
)

2(,)
ot O

ect can be given a name by use of the MAKZ command.
twe inputs and makes the first the name of the second.

92} "-

o4 a
PRl i

]
b8
)]

+MAKE "DIGIT'" "TOE"

We say that "DIGIT" Ls the name of "TOE" and that "TOE" is the
thing of "JIGIT". To retrieve the thing of a name, we use the
one~input LOGO oreration TEING. Thus:

«PRINT THING OF "“DIGIT"
TOE

So that a name refers to precisely one thing at any time, MAKE

replaces the old thing of the name by the given new thing, the
second input of MAKE. For example:

+MAKE (WORD OF "DIG'" AND "IT") (SENTENCE CGF '"BIG'" AND "TOE'')
+<PRINT THING OF "DIGIT"
BIG TOE

Note that the previous thing of "DIGIT", "TOE", has been replaced
by '"BIG TOE".

Initially, the empty thing, "", 1s taken as the thing of any LOGO
name. Therefore:

+PRINT THING OF '"ABRACADABRA'"

“

(The thing "" has been printed.)

For introductory purposes, an extended form of MAKE is available.
This 1s used by pressing the return key directly after typing in
the word MAKE. LOGO will then type NAME: and wait for the user
to type in the desired name and press the return key. LOGO then
responds by typing THING:., After the user types the desired
thing and presses the return key, the command is executed in
exactly the same way as the standard form. Thus:

+MAKE
NAME m
THING: 2"
+«PRINT THING OF "1"
2
<+

Because of the special importance of names, LOGO provides a
shorthand notation for the operation THING, /IRVING/ means
precisely the same as THING of "IRVING". Thus:

«PRINT SUM OF /1/ AND /1/
4

“

We have already encountered the use of slashes as delimiters for
LOGO dummy inputs within procedure definitions. For example:

-13-

TO PYTHAGORAS /#/ /##/

1§ PRINT SUM (PRODUCT /#/ /#/) (PRODUCT /##/ /44/)
END

When a procedure 1s executed, the occurrence of 3lashed objects
in the title line results in implicit MAKE executions. Each is
given as its thing the actual input in the corresjonding position
following the procedure name. For example, typirg the command
PYTHAGORAS .3 4 results in the name "#" being given the thing "3"
and’ the name "##" being glven. the thing "4", /.../ means

THING OF "..." whether the assignment was made by a procedure
call or a MAKE command.

The names made by implicit MAKEs as a result of the execution of

a title line have a special status. These names vanish from

the list of names currently known to LOGO upon termination of the
procedure. This 1s true even if the initial assignment of a thing
to a dummy name is changed by a MAKE within the procedure.

TO SHOW-OFF /M/ /N/

19 PRINT SENTENCE OF "M IS"" /M/
28 PRINT SENTENCE OF "N IS" /N/
END

+SHOW-OFF_"TURTLE" "EGGS"
M IS TURTLE

N IS EGGS

“«PRINT /M/

+«PRINT /N/ /

<+ . /

If a dummy name 1is already known to LOGO, LOGO sets up a special
version of the name exoressly for use within the procedure. As

before, each dummy nams 1s given as its thing the corresponding

input. Thus:

+MAKE ''M" "IRVING"

+SHOW~OFF "EGGS!" AND "TURTLE"
M IS EGGS

N IS TURTLE

“PRINT /M/

IRVING

<«

Such special treatment is glven to a dummy name independently in
each procedure where it occurs. Thus:

14~

TO SHO /A/

14 PRINT SENTENCE "/A/ 1S" /A/
2¢ SHOO (BUTFIRST OF /A/)

3@ PRINT SENTENCE "/A/ 1S" /A/
END

TO SHOO /A/ ‘

1 PRINT SENTENCE "/A/ IS" /A/
2¢ SHOOO (BUTFIRST OF /A/)

3¢ PRINT SENTENCE "/A/ IS" /A/
END

TO SHOO0O /A/
1@ PRINT SENTENCE "/A/ 1S" /A/

END

+SHO ""START"

/A/ 1S START (Printed by SHO. At this point
there is only one /A/)

/A/ 1S TART (Printed by SHOO. Now there are
two versions of /A/)

/Al 1S ART (Printed by SHOOO. Now there are
three versions of /A/)

/A/ 1S TART (Printed by SHOO. Two versions of

’ /A/ remain since SHOOO has finished)

/A/ 1S START (Printed by SHO. Only one version
of /A/ is left)

* o (A1l versions of /A/ have vanished)

2.8 Conditional Operations

LOGO includes a number of operations called predicates, whose
outputs are one of the words '"TRUE" or "FALSE". NUMBERP is
the LOGO number predicate. :

«PRINT NUMBERP OQF "777"

TRUE

+PRINT_NUMBERP OF "SEVEN'"

FALSE

+“PRINT NUMBERP CF_WORD OF 2 AND 2
TRUE

“

WORDP and SENTENCEP are the LOGO word predicate and LOGO sentence
predicate: ‘

-15=-

+«PRINT WORDP OF 711

TRUE '

+PRINT WORDP OF '"WORDS WORDS WORDS'"
FALSE

+PRINT SENTENCEP OF "I C A R U S"
TRUE o

“

Two useful predicates requiring two inputs are the identity
predicate, IS, and the predicate GREATERP for comparing two
numbers. IS outputs "TRUE" if its inputs are the same, and
"FALSE" 1f they are different; GREATERP outputs "TRUE" if its first

input 1s strictly greater than its second input, and "FALSE"
otherwise,

«PRINT IS SUM OF 2 AND 2 ''yn
TRUE -

+«PRINT IS SUM OF 2 AND 2 ''gyuv
FALSE

+PRINT GREATERP 2 2

FALSE

-+

Some predicates require one of the words "TRUE" or "FALSE" as
inputs. These include the conjunctive predicate BOTH and the
disjunctive predicate EITHER. BOTH outputs "TRUE" if both of
its inputs are "TRUE'"; EITHER outputs "TRUE" if either one or
the other or both of its inputs are "TRUE",

+PRINT BOTH (1S WORD OF '"2'" AND 2" '22'') AND (NUMBERP OF "SEVEN'')
FALSE .

+PRINT EITHER (GREATERP 2 3) AND (WORDP_OF "FALSE')

TRUE

“

A predicate's output can be tested for "TRUE" or "FALSE" and
subsequent instruction execution can be made to depend upon the
result, LOGO provides a command, TEST, to facilitate such tests.

“TEST 1§ 'jn (Clearly true)

«[F FALSE PRINT "1 IS NOT 1" (So this line is not executed)
+«IF_TRUE PRINT "IT IS!" (But, this one is)

IT IS!

«<1F TRUE PRINT "YES YES YES" (And this one also)

YES YES YES

<+

~16-

TEST takes one input which must evaluate to "TRUE" or "FALSE",.
Its effect 1s to mark a "truth flag" correspondingly (i.e., to
true or false). The associated command IF TRUE takes an instruc-
tion line as input and executes this line only if the truth flag
1s marked true. (Similarly with IF FALSE, when the truth flag is
marked false.) Note that IF TRUE and IF FALSE take command lines

as inputs -~ in this respect they are different from other LOGO
commands, .

Using TEST apnd IF TRUE, new predicates can be defined by LOGO
procedures., Thus:

+«T0 NOT /INPUT/

>1¢ TEST /INPUT/

>2¢ IF TRUE OUTPUT "FALSE"
>3§ OUTPUT ""TRUE"

>END)

NOT DEFINED

+PRINT_NOT IS "1 ian

TRUE

“

2.9 .Recursion)
A procedure may use another procedure in its definition, as we
saw 1n Section 2.6 where QUADRUBBLE was defined using DUBBLE.

An even more powerful capability comes about by using a procedure
in its own definition., An example of such a self-referential, or
recursive, procedure 1s the following one, FIND, which outputs
the /N/th element of /LIST/.

«TO FIND /LIST/ /N/

>1fg TEST 1S /N/ 1

>2¢ IF TRUE OUTPUT (FIRST OF /LIST/)

>38 OUTPUT FIND OF (BUTFIRST OF /LIST/)
AND (DIFFERENCE OF /N/ AND 1)

>END

«<PRINT FIND OF "z ¥ X W' AND 1
z
+PRINT FIND OF "Z Y X W' AND 3
X

'S

FIND outputs immediately only in the case where /N/ is 1. It
reduces all other cases to that one by creating a number of
distinct copies of FIND. For the last example shown, three

~17-

separate coples of FIND were used for execution of that instruc-
tion, The process was as follows:

The command line is:

PRINT FIND "Z Y X W' 3
PRINT needs one input, so the execution goes to the next element
on the line, which is FIND. Two literal inputs follow FIND, so
FIND is exccuted 1line by line. Line 38 of FIND with the c¢urrent
inputs is ‘

38 OUTPU: /IND "Y X w" 2,
Thus, in order to finish execution of our original procedure
FIND, we must perform FIND "Y X W" 2, A new copy of FIND, let
us denote it (for ourselves) as FIND¥, is used for this purpose
and this copy 1is given inputs "Y X W" and 2, When 1line 3¢ of
FIND* is reached, we have

3 OUTPUT FIND "X W" 1,
Thus, stil1ll another copy of FIND is required, which we call
FIND*¥, with inputs "X W" and 1. The execution of FIND¥¥ pesults
in an output of "X" to FIND¥ (siice the value of /N/ for this
copy is 1) and FIND¥* "yanishes". FIND¥ now outputs "X" to
FIND, which outputs "X" to PRINT.

We can display this sequence of successive procedure calls with
the Inputs and output associsted with each of them in a compact
way using the LOGO command TRACE. We indicate that we wish to
TRACE the procedure FIND in its subsequent executions as follows,

+«TRACE FIND
* (LOGO puts a trace on FIND and
returns control to the user)

The effect of TRACE 1s i.lustrated next, using the example just
discussed.

«PRINT FIND OF "2 Y X W' AND 3
FIND OF "Z Y X WY AND "3V

FIND OF "Y X W' AND '"2" (This is our FIND*)
FIND OF "'X W' AND 'M1M (Our FIND**, the third copy of FIND)
FIND OUTPUTS "x" (FIND** outputs to FIND*)
FIND OUTPUTS "'x" (FIND* outputs to FIND)
FIND OUTPUTS Hx" (FIND outputs to PRINT)
X (PRINT prints "X")

“

Note that TRACE prints the title line of each TRACEd procedure
invoked, listing the inputs 1t 1s called with, and note that it
erints a new line each time a procedure outputs or ends. The
title line and output line of each procedure are indented the
same number of spaces.

-8~

In the procedure FIND the execution of the command QUTPUT
requires invoking and executing another copy of the procedure,
In some recursive procedures the execution of other operations
in the recursion line may be deferred as well. One such proce-

dure 1s COLLAPSE, which takes a sentence and collapses it into a
word,

«TO COLLAPSE /S/

>1¢ TEST IS /S/ /EMPTY/ (/EMPTY/ denotes the empty LOGO object, '"")
>2@ IF TRUE OUTPUT /EMPTY/

>3@ OUTPUT WORD OF (FIRST OF /S/) AND

(COLLAPSE OF BUTFIRST OF /S/)
>END

+PRINT COLLAPSE OF 'CAN YOU READ ME"
ANYOUREADME

In the recursion line of COLLAPSE, line 38, the execution of the
operation WORD, as well as the command OUTPUT, must be deferred.
This is shown in the following trace.

+«TRACE COLLAPSE
+PRINT COLLAPSE OF ''"MARES EAT OQATS"
COLLAPSE OF '""MARES EAT OATS"
COLLAPSE OF "EAT OATS"
COLLAPSE OF "OQATS"
COLLAPSE OF """

COLLAPSE OUTPUTS ""
COLLAPSE OUTPUTS '"OATS"
COLLAPSE OQUTPUTS '"EATOATS"
COLLAPSE OUTPUTS "MARESEATOATS"
MARESEATOATS

-«

The same form of recursion used with COLLAPSE was shown in
Section 1 in the definitions of FACTORIAL and REVERSE. More
complex and powerful forms of recursion can be created by the
advanced user. These can even include recursions which are not
reduclible to iteration, such as the Ackerman function (the
generalized exponential function used in recursive function
theory).

~19-

" e

3. Program Manipulation

Up to now we have studied only those parts of the LOGO language
necessary for writing executable LOGO programs (the operations,
commands, names, etc., and the rules governing their relations
and usage). This chapter deals with those facilities of LOGO
that aid a user in his programming work at the computer terminal.

These include listing, editing, erasing, abbreviating, storing,
and retrieving.

3.1 Editing
A, Editing a Line

There are a number of ways to modify the instruction line being
typed 1n, at any time before the carriage return key is pressed.
This "editing" capability works with both direct instruction
lines and those which are part of a procedure definition.’

If the backslash character "\ is pressed, this character is
typed and its effect 1s to erase the character preceding it.
The backslash can be typed more than once to effect multiple
erasures., Thus:

“«PINT N\RINT 4\ 5
5 .
+«PRIN TUNNNT 4
4

<+

Pressing the CTRL key and W simultaneously results in a number
of backslashes being typed, sufficlent to completely erase the
preceding LOGO word. Denoting this action by WS, then:

«PRINT "THE QUIKWENN\\QUICK BROWN FOX"
THE QUICK BROWN FOX
<+

The more drastic action of pressing the RUBOUT key erases the
entire line. To show this has been done, the computer erases out
the back arrow («) preceding the '"rubbed out" line, using a #.
Denoting this editing action by (RUBOUEL then:

#PRINT "THE QUICK BROOW (RUBOUT)

-20-

B, Editing a Procedure

There are several editing commands which can be used only while a
procedure 1s being defined. (The computer indicates that we are
in the process of defining a procedure by typing a ">" rather
than a "¢«" when it is ready to receive the next line.) The
command EDIT, followed by a procedure name, 1s used to modify

the definition of a previously defined procedure. LOGO responds
to this command by typing a ">" to indicate that we are again in
defining mode. After the desired changes have been made, the
command END terminates the procedure definition just as before.

Inserting a Line

LOGO arranges the lines of a procedure in order of increasing
line number. Thus, we can "insert" an instruction line between
two already typed lines simply by giving it a number between the
line numbers of the two given lines. It 1is good programming
practice to number procedure lines by fives or by tens, to leave
space for thi3*possibility.

Assume we had previocusly defined REV:

TO REV /A/ /8/ /C/
18 PRINT /C/

28 PRINT /A/

END

and we wish to insert the instruction line PRINT /B/ between
lines 18 and 29, as line 15,say. Then:

+EDIT REV

>15 PRINT /8B/
>END

REV DEFINED

-+

This effects the desired insertion.

Changing an Entire Line

We can change a previously entered instruction line by simply
typing the desired instruction line, giving it the same number.
The first version vanishes. We can retype the title line by
typlng TITLE, followed by the new title line.

Typing a line number and carriage return results in that line
containing no instruction -- effectively erasing the line
previously having that line number. A neater way to erase a line
is by using the command ERASE LINE __ , which completely expunges
the line indicated.

~2 Y-

The current version of any line can be shown by the LOGO command
LIST LINE __, which prints out the indicated line. Similarly,
LIST TITLE prints the title 1line,

Changing Part of a Line

Often 1t 1s easier to modify an existing line than to ccmpletely
retype it. To do this, we type EDIT LINE __, giving the appro-
priate line number. The computer will place the line number at
the beginning of the next line. To have 1t type the next word of
that line, we press the control key (CTRL) and N simultaneously.
(This action is denoted by N®.) To get the rest of the line, we
type RC (the control key and R). These two actions, together

with "\" and WC described above, can be used together, as in the
following example:

>LIST LINE 38 (Note that we are already in defining mode,
38 PRONT SUM OF AND 2 the only context in which LIST LINE and
>EDIT LINE 3¢ EDIT LINE are meaningful)

30 NCPRONTWCENMANAPRINT NCSUM NCOF 3_RC AND 2 (carriage return)

(Since NC and RC don't type out anything on the teletype, the
above line looks readable.)

>LIST LINE 3¢
PRINT SUM OF 3 AND 2

Listing and Erasing the Entire Procedure

LIST (procedure name) results in the procedure being typed zxactly
as it stands at that moment. ERASE (procedure name) results in
the procedure being expunged,

Nearly any LOGO instruction line including LIST (procedure name)
and ERASE (procedure name) can be executed when in the procedure
definition (>) mode. The only exceptions are those like TO and
EDIT which involve the definition of yet another procedure while
we are already defining one.

The following example shows a typlcal editing session involving
the use of most of the features described in this section.

20

+LIST REVERSE

TO REVERSE /Y/ (Should be /X/ in place of /Y/)
19 TEST IS /X/ /EMPTY/ (Missing is 15 IF TRUE OUTPUT /EMPTY/)
28 OUTPUT WORD (LAST /X/D

(REVERS BUTLAST /X/) {Incorrect spelling)
END
+«EDIT REVERSE (We could have used EDIT TITLE and then
>TITLE TO REVERSE /X/ N¢ twice to have LOGO type TITLE TO

>15 IF TRUE OUTPUT /EMPTY/ REVERSE)
>EDIT LINE 28
2§ NCOUTPUT NCWORD NE(LAST NC/X/) NC
CREVERS \E_RCBUTLAST /X/) (The \ deletes the space)
>LIST LINE 28
28 OUTPUT WORD (LAST /X/ (REVERSE
BUTLAST /X/)
>LIST REVERSE
(skips one line)
TO REVERSE /X/
19 TEST IS /X/ /EMPTY/
15 IF TRUE OUTPUT /EMPTY/
2@ OUTPUT WORD C(LAST /X/) (REVERSE
BUTLAST /X/)D
>END (Note there is no END command since

REVERSE DEFINED definition of reverse is not complete)
'S

3.2 Abbreviating

To reduce the user's typing, the computer recognizes short forms
for most commands. These are called abbreviations. For example:

+P_S "CAT" "DOG"
CAT DOG

P is the abbreviation for PRINT and S for SENTENCE. The long

forms are substituted internally for the abbreviations as soon

as the abbreviations are typed in. Thus, 1if we type in a procedure
definition making use of abbreviations and then 1ist 1it, the
computer types it back to us in expinded form. The set of
built-1in avbreviations is given as part of Section 5,

The user can make his own abbreviations with the command
ABBREVIATE (two inputs). The first input can be any LOGO command,
operation, or procedure, or combination of them. The second is
the word which will become the abbreviation. The "nolse word" AS
may be inserted between the two inputs of ABBREVIATE., -

-23-

+ABBREVIATE "PRINT SUM" AS "4
4 H}H llsn
8

<+

An abbreviation can refer to just one operation. If we type:

+ABBREVIATE "RANDOM!" 'R
+ABBREVIATE "REVERSE' "R"

the first meaning of "R" is lost.
Built-in abbreviations can also be changed.

+~ABBREVIATE '"POWER'" "P" causes the abbreviation P for PRINT to
vanish.

Listing and Erasing Abbreviations

LIST ALL ABBREVIATIONS results in the typing of all user-defined
abbreviations, for example, we now have:

<LIST ALL ABBREVIATIONS

R: REVERSE
P POWER

+. PRINT SUM
< B

ERASE ALL ABDREVIATIONS is used to erase all abbreviations, and
ERASE ABBREVIATION (abbreviation) to erase the indicated abbre-
viation. For example,

+ERASE ABBREVIATION "4
++ 2 3
+ IS UNDEFINED

<~

3.3 The User Workspace

Upon logging in on a computer and requesting LOGO, the user has

at his dispecsal all built-in features of the LOGO language. These
include the LOGO operations and commands, reserved names, such as
/ENPTY/, and standard abbreviations. The user 1s also assigned

a workspace within the computer memory. The additions he makes

to the LOGO built-ins are kept in this workspace. These possible

24~

additions include user-defined procedures, user-defined abbrevia-
tions, and those user-defined names which were not created by
execution of procedure title lines. Each class of objects in the
user workspace can be listed or erased separately:

LIST ALL PROCEDURES
ERASE ALL PROCEDURES

LIST ALL NAMES
ERASE ALL NAMES

LIST ALL ABBREVIATIONS
ERASE ALL ABBREVIATIONS

Abbreviations are the only built-ins which can be changed by the
user. ERASE ALL ABBREVIATIONS not only erases all user abbrevia-

tions, but restores the built-in abbreviations to their original
state.

The commands LIST ALL and ERASE ALL combine the listing and
erasing commands for all these three types of objects in user
workspace. Thus, LIST ALL provides an exact accounting of every-
thing in the user workspace and ERASE ALL completely empties the
workspace. Any procedure, name, or abbreviation can be listed

or erased individually, as described in preceding sections.

The command LIST CONTENTS 1lists just the title line of every
procedure in workspace. For example:

“LIST CONTENTS

TO REVERSE /X/
TO FACTORTAL /N/

<+

GOODBYE, as well as exiting from LOGO, results in the complete
loss of the user workspace. LOGO provides commands to save the
contents of the workspace for subsequent use. If such retention
1s desired, it must be effected before GOODBYE is typed. The
saved material can tnen be retrieved at any later time. This
process of "SAVEing" and "GETting" is described next.

3.4 Ffiling

LOGO provides a facility for users to file away their work. The
basic unit of a LOGO file is an entry. Each entry has a two-word
entry name. The first word of the entry name 1s the file name
and is common to all the entries in a file (it is commonly the

-25-

name of the user who owns the file). The second word of the
entry name dlstinguishes the entry from other entries in the
same file. Examples of entry names are JIM EQUATIONS, NANCY
RANDOMSENT, JIM NIM, NANCY EQUATIONS.

An entry 1s created by the command SAVE. The entry thus created
contalns everything In the user workspace -- that is, everything
that would be listed by LIST ALL. The user workspace 1s left
unchanged by the SAVE command. For example,

+«SAVE GRANT ARITH

“

In this example, the entry GRANT ARITH is created. If GRANT
ARITH already exists, the old entry is replaced by the new one.
Although the user workspace may subsequently change, the contents
of the entry GRANT ARITH will remain as they were at the time
they were saved. When the user gives the command GOODBYE, the
workspace 1is destroyed but all entries are retained.

In a well-organized file, each entry contains a related group of
procedures, names, and abbreviations (for examnle, those that
are used for playing NIM, or those used in solving linear
equations). By first erasing irrelevant parts, the user can
save any desired subset of his workspace.

To retrleve an entry from a file, the command GET 1is used.

“*GET _GRANT ARITH

<+

The contents are coplied into, and become a part of, the student's
current workspace -.- the entry 1tself is unchanged. The additions
to the worksrace provided by a GET are inserted in the same way

as if a user had typed them in. Thus, abbreviations and names
supersede existing ones and procedures in the entry having the
same names as those in the workspace are not entered.

There are three different tyres of objects possibie in the user
workspace, and hence in any entry. These parts of an entry can
be listed by the comrnands

LIST PROCEDURES {(where the dashes
LIST NAMES indicate the two-word
LIST ABBREVIATIONS — entry name)

~26-

LIST ENTRY lists everything in the entry -- all three

parts. LIST CONTENTS glves the title line of each pro-
cedure contained in the entry indicated.

LISTing any part of an entry does not result in its being copled
into the active workspace. 0Only GET will do this.

The command LIST ALL FILES causes LOGO to type all existing file
names. The command LIST FILE causes LOGO to type the entries

in a given file. To remove an entry from a file, the command
ERASE ENTRY is used:

+ERASE ENTRY GRANT ARITH
+GET GRANT ARITH
THERE IS NO ENTRY GRANT ARITH

+

When all entries in a file are erased, the file itself is auto-
matically eliminated.

LOGO also provides two operatione for working with LOGO files.

SIZE outputs a number proportional to the amount of
space the entry indicated occuples in memory.

ENTRIES _ outputs a sentence of the second words of all
entry names contained in the file indicated.

3.5 Debugging

The LOGO system has built-in aids to help users find the "bugs"
in their programs. A bug has one of two effects. It may cause
the computer te try to execute an 1llegal instruction or it may
direct the execution of instructions that are legal but which
vroduce a wrong answer Or no answer at all, e.g., it may put the
computer in a loobp that never ends.

In the first case, the computer immediately stops executing
instructions and types out a diagnostic message describing the
error and telling where 1t occurred. (Some typical diagnostic

messages are listed at the end of this section.) An example of
this is:

«TO GREET /X/

>19 PRINT SENTENCE - OF "HELLO," AND /X/
>2f PRONT THOW ARE Youz2"

>3 PRINT "'SEE YOU LATER"

>END

GREET DEFINED

-27-

+GREET '""JOHN"
HELLO, JOHN

PRONT NEEDS A MEANING.
I WAS AT LINE 28 IN GREET

There was a bug. The diagnostic message designates the type of
error and where the error was found. EDIT can be used to make
the necessary changes.

+«EDIT GREET

>28 PRINT '"HOW ARE YOU?"
>END

GREET DEFINED

«GREET "JOHN"
HELLO, JOHN
HOW ARE YOU?
SEE YOU LATER

<

When the procedure GREET was being defined, the computer didn't
object when line 28 was typed in, even tnough it did not know

the meaning of PRONT. The reason is that a procedure PRONT might
have been written later, after GREET was defined but before it
was executed.

In this example, the computer's diagnostic message pointed to the
source of the error and thus was directly helpful. Often,
however, we get situations where the illegal instruction isn't
the direct cause of the error. For example, in the course of
running a procedure the computer may say

DIFFERENCE OF '"AB' AND "1"? INPUTS MUST BE NUMBERS.
I WAS AT LINE 3¢ OF SAM.

+EDIT SAM

>LIST LINE 30

3 OUTPUT SUM OF /X/ AND PRODUCT OF /X/ AND DIFFERENCE OF
/Y/ AND M1

Assuning the arithmetic expression given 1s the one intended, the
error is not contained in line 3¢. Somewhere earlier in the
execution, /Y/ was made "AB'" instead of a number. This type of
error then is of the second type mentioned above. The computer
gets past vhe faulty instruction and the defective result shows
up as a bug later when the computer is performing another
instruction, perhaps in a different procedure. In this situation
the diagnostic is less helpful and the error is more difficult to
track down.

-28-~

~ The TRACE command, described in the section on recursion, is often

useful in finding errors, especially those resulting in a faulty
recursion. TRACE, followed by a procedure name, results in a
special "flag" being placed with the procedure. Then, whenever
the procedure is called in an execution, its title line is typed
with the current values of its dummy variables. When the proce-
dure outputs, or 1s otherwise completed, an appropriate typeout
is made and the output, if any, 1s shown. If a procedure is in
TRACE mode, this is indicated whenever the procedure is LISTed.
To get out of TRACE mode, the command ERASE TRACE, followed by

the procedure name, is used. ERASE ALL TRACES is a mcre drastic
LOGO command.

Another useful approach, when the difficulty lies within a known
procedure rather than "between" procedures, is to insert extra
lines 1in the defective procedure to type intermediate results.

These help to pinpoint the error and can be removed after a
correction has been made.

Diagnostic Messages

There are about 100 diagnostic messages. The following are some
typical ones.

YOU NEED / MARKS AROUND EACH INPUT.

TITLE MUST BE FOLLOWED BY "TO",.

END WHAT? YOU'RE NOT DEFINING ANYTHING.

GO WHERE?

LIST ALL WHAT?

DON'T TRY TO DEFINE ANOTHER PROCEDURE INSIDE THIS ONE.
DIVISION BY ZERO.

DON'T USE THE EMPTY WORD FOR A NAME.

ERASE WHAT?

THE INPUT 70 TEST MUST BE A PREDICATE.

The following comments mean that the number of inputs found on

the line was not correct. The exact form of comment depends on

the particular parsing error. »
. IS EXTRA

THERE ARE INPUTS MISSING FOR

In the following diagnostics, the underscored words are filled
in appropriately by LOGO when the error occurs. The words given
here are typical examples.

CMATCHING"? (or / or (or))

PRONT NEEDS A MEANING.
TRUMP ISN'T COMPLETELY DEFINED. (END command not yet given.)

-29-

THERE IS NO LINE 38.

SUM OF "A'" AND "5'"? INPUTS MUST BE NUMBERS.

TEST IS USED BY LOGO, (The user cannot define a procedure
called TEST)

OF ISN'T A PROCEDURE.

THERE ISN'T ANY FILE GRANT

REVERSE IS ALREADY DEFINED,

YOU'RE ALREADY DEFINING REVERSE.

YOU'RE ALREADY EDITING REVERSE.

REVERSE CAN'T BE USED AS AN INPUT., IT DOESN'T OUTPUT.

The comment 1 AM IN TROUBLE. TELL YOUR TEACHER indicates a
computer failure.

3.6 Interrupting Execution

The execution of a direct line or procedure is interrupted by

the momentary depression of the key "labeled BREAK. The pressing
of the BREAK key 1is effective, whether the computer 1s performing
internal operations or printing on the teletypewriter. When this
occurs, LOGO types "BREAK" as well as the procedure name and line
it was then executing, and then returns control to the user.
(This "positional"™ information is omitted 1f a direct line was
interrupted.) The state of the execution is preserved -- all
intermediate results are kept. These include all the local names
set up by the use of dummy variables in procedures which had not
yet terminated. LIST ALL NAMES gives all these '"local" names in
order opposite to the order of their creation. Control has
returned to the user exactly as though these intermediate results
did not exist. They do not get saved by a SAVE command, nor do
they interfere with any procedure definition or execution. They
can, however, slow down execution somewhat because they take up
room In the user's workspace. The only real effect these inter-
mediate results have i1s initiated by the no-input command GO.
This results in the interrupted calculation being resumed exactly
from the point left off. The only loss that can occur is that of
some printing that was in process when BREAK was pressed. Any
changes made in the interim will, of course, result in a continu-
ation different from that produced if no interruption had taken
place. Thus, the BREAK key can be a useful debugging tool.

The no-input command CANCEL erases the intermediate results pro-
duced by the calculation interrupted by the latest BREAK. Thus,
if an execution has been interrupted, another initiated without
the use of GO and the BREAK key again pressed, two uses of CANCEL
are needed to erase all the intermediate results existing in the
workspace. It 1s good practice to use CANCEL after interrupting
any procedure which 1s not to be resumed using GO,

~30-

4. Additional Commands and Operations

4.1 Formatting

There 1s one command and several reserved LOGO names for position-
ing characters to be typed. They are particularly useful for

writing procedures to "draw" figures on the teletype, but have
other uses as well.

TYPE 1s a command which causes its one input to be typed. It
differs from PRINT only in that the typehead remains positioned
Just after the character last typeg ~- there 1s no return to the
beginning of the next 1line. ‘

" Some special names are used for formatting with a PRINT or TYPE
command. They are:

/BLANK/ a blank space. (the space bar cannot be used
for thi's because LOGO eliminates superfluous
spaces.,)

/LINE FEED/ teletype goes to next line without moving

horizontally.
/CARRIAGE RETURN/ return to beginning of current line.

/SK1P/ a new line. (has the effect of both a
. carriage return and a line feed.)
/FORM FEED/ move paper to new page on teletypes which

have a form feed feature.
Then, to have the computer draw a diagonal line:

+<TO DIAGONAL /N/
>1f¢ TEST IS /N/ @

>2§ 1F TRUE STOP (Are we finished?)
>38 TYPE "N

>4F TYPE /BLANK/ (Move across one)
>5¢d TYPE /LINE FEED/ (Move down one)

>68 DIAGONAL (DIFF /N/ 1) (Repeat for /N/ -1)
>END

DIAGONAL DEFINED
+«DIAGONAL 8

.
s
"
.
'L
ns
»

-31-

4.2 Interactive Programs

All commands and operations used thus far must have their inputs
specifled before they are executed. Each such input is a literal,
the thing of a name, or the output of some operation or procedure.
The LOGO operation REQUEST, however, causes execution to pause
until the user has typed a string of characters and a carriage
return. REQUEST then outputs thls string. For example:

+PRINT REQUEST

“HUMBUG (REQUEST prints an asterisk "*" to show
HUMBUG that user type-in is required*)

+«PRINT SUM OF REQUEST AND REQUEST

3 (The leftmost REQUEST)

N

5

<+

REQUEST makes possible the writing of programs which "interact”
with the user.

«T0 COPYCAT

>19 PRINT "TELL ME SOMETHING."
>2@ PRINT REQUEST

>38 COPYCAT

>END

COPYCAT DEFINED

+«COPYCAT

TELL ME SOMETHING.

“WHO ARE YOU?

WHO ARE YOU?

TELL ME SOMETHING.

RWHY SHOULD 17?2

WHY SHOULD [?

TELL ME SOMETHING.

#ARE YOU SOME KIND OF NUT
ARE YQU SOME KIND OF NUT
TELL ME SOMETHING.

¥
This asterisk is omitted when LOGO 1s not at the left-hand
edge of the paper. This 1s often the case when the last
typing resulted from a TYPE command.

-32-

The existence of an interactive capability makes the element of
time particularly interesting. There are several ways in which
LOGO makes provision for timing.

The operation ASK requires one input which must be a number,
ASK 1s the same as REQUEST unless the user has not completed his
typing when. a number of seconds equal to the input has elapsed.

If this happens, ASK outputs the empty word and returns the
carriage to a new line.

+T0 QUICKQUERY /QUESTION/

>1¢ PRINT /QUESTION/

>2@ MAKE "ANSWER" ASK 5

>3 TEST IS /ANSWER/ /EMPTY/ ‘

>4g 1F TRUE PRINT ''YoUu WEREN'T FAST ENOUGH"

>58 OUTPUT /ANSWER/

>END

QUICKQUERY DEFINED

+PRINT QUICKQUERY '"WHO DISCOVERED FERMAT'S LAST THEOREM?

YOU HAVE 5 SECONDS TO ANSWER."

“FERM (If as here, 5 seconds have elapsed before the user
presses CARRIAGE RETURN, LOGO resumes control)

YOU WEREN'T FAST ENOUGH
(The empty line is printed here by QUICKQUERY)

“

The current date and time are made available to LOGO by the no-
input operations DATE and TIME:

+PRINT_DATE
6/13/71
+PRINT_TIME
11:45 PM

There is also an internal "clock" which 1s started when the user
enters LOGO. This clock keeps time in seconds:

+«PRINT CLOCK
1886
+PRINT CLOCK
1811

RESET CLOCK sets the clock back to 4.

«PRINT CLOCK
1825

+RESET CLOCK
+PRINT CLOCK
5

“

-33-

The WAIT command makes LOGO pause a number of seconds equal to
its one input. It has no other effect. For auditory intzraction,
there is the reserved name "BELL". PRINT /BELL/ rings the
teletype bell.

4.3 More Arithmetic

There are several numerical operations besides the basic four
operations and GREATERP and RANDOM, all discussed earlier. All
bullt-in numerical operations require integer inputs.

The operation QUOTIENT simply outputs the integer part of the
quotient of its two inputs. REMAINDER outputs the remainder of
the division yielding the quotient. - DIVISION outputs a sentence

of two numbers -- the quotient of its two inputs and the
remainder.

+«PRINT QUOTIENT OF 34 AND =6

-5

+PRINT REMAINDER OF 34 AND -6
L

+PRINT DIVISION OF 34 AND -6
-5 &

<+

MAXIMUM outputs the greater of its two inputs. MINIMUM outputs
the lesser of 1its two inputs.

+«TO ORDER2 /A/ /B/

>1¢8 OUTPUT SENTENCE
MINIMUM /A/ /B/
MAXIMUM /A/ /B/

>END

ORDER?2 DEFINED
+PRINT ORDER2 3 -1
-1 3

<+

ZEROP 1s a one-input operation which outputs "TRUE" or "FALSE"

as the input 1s, or is not, numerically equal to zero. Thus,
ZEROP 1s not the same as IS 2.

+«PRINT IS ¢ ¢¢
FALSE
+PRINT ZEROP ¢@¢
TRUE

<+

-34-

~COUNT is not 1ltself a numerical operation, but it has an 1nteger
output, so it usually appears in conjunction with numerical
operations. COUNT has one input. Its output is the number of
letters in the input, if it is a LOGO word -~ or the number of
words, if it is a LOGO sentence. Thus:

+PRINT COUNT OF "ABc"

3

+«PRINT COUNT OF "“THE CAT IN THE HAT"
5

+PRINT COUNT_ ""

g

“

4.4 Local and Global Names e

The Command LOCAL

As we saw earlier, including a name on the title line of a
procedure meant that a special copy of the name would be created
each time the procedure was invoked. Each copy disappears when
the procedure which created it terminates. This feature is
espeglally useful when a procedure makes copies of itself
recursively, like the procedure REVERSE in the section dealing
with recursion. When a name does not appear in the title line or
the procedure in which it is used, no special copy of the name is
made. This 1is often a useful feature when we use such a global
narme to transfer information from one procedure to another.
Sometimes, as in the example following, a "slight" variation of
REVERSE, it is a handicap.

«TO REVERSE /INPUT/
>1f TEST IS /INPUT/ /EMPTY/
>2§ 1F _TRUE OUTPUT /EMPTY/
>3 MAKE "Y' FIRST OF /INPUT/
>4f OUTPUT WORD OF
REVERSE (BUTFIRST OF /INPUT/) AND /Y/
>END
_REVERSE DEFINED
«PRINT REVERSE "HELLO"
00000

-35-

+JRACE REVERSE
+PRINT REVERSE OF "HELLO"

REVERSE OF UHELLO" ' (/Y/ .is now “H')
REVERSE OF '"ELLOY (/Y/ is now "E")
REVERSE OF "LLO"k (/Y/ is now "L')
REVERSE OF 'L.O" (/Y/ is now "L")
REVERSE OF '"o" (/Y/ is now ''O")
REVERSE OF " (Since input is /EMPTY/, /Y/ is
REVERSE OUTPUTS " not changed)

REVERSE OUTPUTS 'O
REVERSE OUTPUTS "oo'"
REVERSE OUTPUTS '"000"
REVERSE OUTPUTS "ooo0O"
REVERSE OUTPUTS '"00000"

00000 (The result is PRINTed)

<+

"Y" 1s made "O" in the fifth copy of REVERSE and never changes
thereafter. 1In the succeeding outputs, this /Y/ is what 1s
actually used. We really intended that a new copy of "Y" exist
for each calling of REVERSE. We can easily accomplish this by
the insertion of the instruction:

5 LOCAL ''y"

This results in "Y" being handled just as 1if 1t were on the
title line. Now REVERSE works.

+PRINT REVERSE '"'HELLO"
OLLEH -

<+

LOCAL 1is an unusual command in that it allows any number of
inputs to follow it. Each is taken as a name to be made "local"
to the procedure in which LOCAL appears.

4.5 Automatic Program Generation - An Advanced Feature

DO 1s a LOGO command which results in the execution of its one
input. Thus, for example,

+DO “EDIT FOO"
> (and we are editing FO0O)

In the case above we could just as well have typed in EDIT FOO
directly, omitting the quotes and the DO. But, we could also
have written, in s%ill larger form:

+MAKE_"PNAME" "FQO"
+DO_SENTENCE "EDIT" AND_/PNAME/

Here we see the utility of DO. It enables exact specification
of parts of statements to be deferred, which otherwise would have
had to be inserted in literal form. Thus the command DO forms

the basis for general procedures which create or modify other
procedures,

Two operations are provided by LOGO to enable a procedure to find
the current contents of a procedure to be modified.

LINES 1is a one-input procedure, It outputs the sentence of the
line numbers of the procedure given as input.

TEXT is a two~input procedure -- it requires a procedure name
and a line number. It outputs the entire line, as a sentence.

If the line number @ 1is given, TEXT outputs the title 1line of
the procedure indicated.

Thus, LINES can be used to find what lines exist and TEXT to go
through them one-by-one.

To i1llustrate these commands, consider the following procedure
for replacing /WORD/ by /SUBST/ in /SENTENCE/ .

+«J0 REPLACE /WORD/ /SUBST/ /SENTENCE/
>1f8 TEST IS /SENTENCE/ /EMPTY/

>28 1F TRUE OUTPUT /EMPTY/

>38 TEST 1S C(FIRST /SENTENCE/) /WORD/
>4g IF TRUE OUTPUT SENTENCE

/SUBST/
REPLACE /WORD/ /SUBST/ (BUTFIRST /SENTENCE/)
>58 OUTPUT SENTENCE o

FIRST /SENTENCE/
REPLACE /WORD/ /SUBST/ (BUTFIRST /SENTENCE/)

>END

REPLACE DEFINED

“PRINT REPLACE OF "CATS" "“DOGS™ "IT'S RAINING CATS AND DOGS"
IT'S RAINING DOGS AND DOGS

+«PRINT LINES OF "REPLACE"

14 24 39 4g s5¢

+«PRINT TEXT OF "REPLACE' AND 34

38 TEST IS (FIRST /SENTENCE/) /WORD/

<

-37-

The following set of procedures, using the procedure REPLACE,
inserts /W2/ in place of /W1l/ everywhere the latter appears in
a procedure /PNAME/. It exemplifies the use of DO, LINES, and
TEXT.

TO MODIFY /PNAME/ /W1/ /wW2/

1§ DO SENTENCE OF "EDIT" AND /PNAME/
2% CHANGE (LINES OF /PNAME/) /W1l/ /w2/
3g DO "END"

END

TO CHANGE /LINES/ /Wl/ /wW2/
19 TEST IS /LINES/ /EMPTY/
28 IF TRUE STOP
38 DO SENTENCE SENTENCE SENTENCE
"REPLACE"
/Wl/
/W2/
~ TEXT OF (FIRST /LINES/)
4g CHANGE (BUTFIRST OF /LINES/) /W1/ /wW2/
END

The reserved name "CONTENTS" has as its thing, the sentence of
all procedure names (not title lines) in workspace. This makes
possible writing of procedures even more general than the above.

For further generality, /FILES/ 1s a sentence consisting of all
file names.

4.6 Other Ways to Terminate a Procedure

To stop execution of a procedure before the END command, the @
input command STOP may be used. Its effect 1s exactly that of
END -- the procedure simply stops and control returns to whatever
called the procedure, STOP 1s often used to terminate one branch
resulting from a TEST. For example,

TO FACTOR /A/

19 TEST ZEROP /A/

26 IF TRUE PRINT "I CANNOT FACTOR ZERO"
38 1F TRUE STOP

. . 3
. .)
. .

The one-input command EXIT also terminates a procedure. Its
input is typed, then LOGO acts exactly as though an error has
been found, typing the location of the EXIT command and returning

~38-

control to the user. Thus, the example of a partial procedure
preceding could have been written ‘

TO FACTOR /A/
18 TEST ZEROP /A/
2¢ IF TRUE EXIT "I CANNOT FACTOR ZERO"

. L4 L]
. .

and, after the procedure has been completed,

+FACTOR §
I CANNOT FACTOR ZERO
1 WAS AT LINE 28 OF FACTOR

~4.9 Miscellany

The Turtle

There is a set of operations and commands reserved for the
"turtle", a LOGO-controlled robot.

The g-input command$ FRONT and BACK move the turtle’'one unit in
the directions they name. RIGHT and LEFT rotate the turtle
clockwise and counterclockwise. HORN rings the turtle's bell.

The @-input operations TOUCH LEFT and TOUCH RIGHT refer to the
turtle's touch sensors. TOUCH LEFT outputs TRUE if the left
sensor is against an obstacle, otherwise, it outputs FALSE.
TOUCH RIGHT queries the right touch sensor 1in the same way.

Other Commands and Operations

EﬁPTYP‘is a one-input operation which outputs . TRUE or FALSE as
its input is or is not the empty word, EMPTYP has exactly the
same effect as IS /EMPTY/.

IGNORE is a one-input command which has no effect, It 1s used
in the rare situations where an output which has no further use
is generated. For example, the lines

5§ PRINT "PRESS CARRIAGE RETURN TO CONTINUE"
6§ IGNORE REQUEST

'T}Treéultfinftyping of the message given by 1ine 5ﬂ,'fol;owedlbyk‘{f;;,»ﬁf
- typing of "#!" and a pause in execution until the CARRIAGE RETURN

ff7ﬁ,v“ooc" S

GO TO LINE is a one-input command which is valid only in a pro-

cedure. It causes execution to pass to the line whose number 1s
given as 1its input.

Comments

A user may place remarks which he does not wish to be executed
anywhere within a procedure definition. The user indicates that
a string 1s not to be executed by placing semicolons around 1it,
The only restriction on inserting comments in this way is that
they may not be placed within the quotes demarcating a literal
or within the pair of slashes delimiting a LOGO name., Remarks
correctly indicated have no effect on the execution of the pro-

cedure they lie within. They only appear when the procedure 1is
listed. For example,

TO DIAGONAL /N/; DRAWS A DIAGOMAL LINE¥

1§ TEST IS /N/ @; END TEST

2 ; IF /N/ 1S @ WE ARE DONE; IF TRUE STOP
3¢ TYPE fein

44 TYPE /BLANK/; MOVE ACROSS ONE SPACE

sg TYPE /LINE FEED/; NEXT LINE

- 6§ ; REPEAT FOR /N/ -1; DIAGONAL (DIFF /N/ 1)

Comments may be placed after the entry name in a SAVE command,
again preceded by a semicolon. The comment is typed whenever.
the entry name appears in a listing:

+SAVE GRANT ARITH; A GENERAL ARITHMETIC PACKAGE

/[QUOTE/

If the user tries to print "DOG", complete with quotes, he gets
an error. ,

«PRINT "''DOG"" '
‘ (prints empty word)
DOG"" IS EXTRA

The special LOGO thing /QUOTE/ 1s used in such a situation to

indicate a quote mark which is not intended as the delimiter ofr
a literal ‘Thus:

 “pRINT. SENTENCE SENTENCE /QAOTE/ "DOG“ /QUOTE/

;th comment at the end of ‘”liﬁefheéd7hoﬁfb¢7términétéd?wibhfAlﬂf5£7‘
‘a semicolon, g e

5. Glossary and Index

Abbr. Description Page

ABBREVIATE ABT (2-input command) sets up second input

as the abbreviation of the first input 23
AND ("moise'" word) used for clarity; valid

only between inputs of a procedure 6
AS ("noise" word) valid only in

abbreviating 23
ASK (1-input operation) outputs literal

type-in from teletype if completed in
input number of seconds, else the empty
word ' 33

BACK (P-input command) '"turtle'" effector,
moves turtle back 1 space 39

BOTH B (2-input operation) each input must be
TRUE or FALSE; outputs TRUE if both are
TRUE, otherwise FALSE 16

BUTFIRST BF (1-input operation) outputs all but
first character of an input word, or all
but first word of input sentence 7

BUTLAST BL (1-input operation) outputs all but last
character of input word, or all but last
word of input sentence 7

CANCEL (P-input command) eliminates one level
of break 30

CLOCK . (p-input operation) outputs time given
by internal one-second clock 33

- COUNT C (1-input operation) outputs number of
: ' : characters of an input word, or number ;
of words of an input sentence , 35

DATE “ (p-input operation) outputs current date 33

DIFFERENCE DIFF (2-input operation) difference of first
- and second input, which must be integers 8

DIVISION - DIV (2-input operation) inputs must be

L ' ~integers. Output is sentence of integer . 3

: quotient ‘and remainder '; 34
~5;Ff'@0:;~ i l[n kQ;’ ,ff,_(l -input command) executes 1ts 1nput as
ST NN R G ’,;a LOGO . instruction line : 2 S

- n:‘(command folloWed by procedure name ”ij‘wle ;;iﬁ
| Puts L0GO into dofine mode 21,23,28

Abbr.

EDIT TITLE EDT

EITHER El
EMPTYP EP

END

ENTRIES

ERASE FR

ERASE
ABBREVIATION

ERASE ALL

ERASE ALL
ABBREVIATIONS

ERASE ALL
NAMES

ERASE ALL
PROCEDURES

ERASE ALL
TRACES

ERASE ENTRY EE

ERASE LINE ERL

ERASE TRACE

Description Page
(Pp-input command) used to edit title,
valid only in define mode 23

(2-input operation) each input must be
TRUE or FALSE. Outputs TRUE if either
input is TRUE, otherwise FALSE 16

(1-input operation) outputs TRUE if
input is the empty word, otherwise

FALSE , 39
(p-input command) terminates a
procedure definition 5

(1-input operation) outputs sentence of
second words of entry names in file
given as input 27

(command, followed by procedure name).
erases procedure from workspace 22

(1-input command) erases abbreviation
given as input ; 24

(p-input command) completely erases
workspace, restores built-in abbrevia-
tions 25

(p-input command) erases all user-

defined abbreviations in workspace 24,25
(p-input command) erases all user- ,
defined names in workspace 25

(P-input command) erases all procedures
from workspace 25

(p-input command) removes trace flag
from all traced procedures in workspace 29

(command, followed by entry name)
completely erases indicated entry 27

(1-input command) only valid in def1ne
mode. Erases line whose number is , ;
given as input 21

(command followed by procedure name)‘
removes trace flag from indicated

procedure - : , 29 t_ﬁf;

k‘f(l-xnput command) types its input,,the e
. line number and procedure name in which = .
flt appears and terninates execution ,;95738j“

Abbr, Description Page

FRONT (p-input command) "turtle" effector,

moves turtle forward 1 space 39
GET (command, followed by entry name)

enters indicated entry into workspace 26
GO (p-input command) continues execution

from a BREAK key interrupt 30
GO TO LINE GTL (1-input command) only valid within a

procedure definition, Transfers execu-
tion to line whose number is given as
input

GOODBYE GB - (p-input command) terminates LOGO
session 3,25

GREATERP GP (2-input operation) inputs must be
integers. Outputs TRUE if first input
is strictly greater than second, else
FALSE - 16

HORN _ (p-input command) "turtle" effector,
‘ rings turtle's bell 39

IF FALSE IFF (command followed by instruction)
: executes instruction if truth flag is
FALSE, otherwise has no effect 16

IF TRUE IFT (command followed by instruction)
executes instruction if truth flag is
TRUE, otherwise has no effect 16

[GNORE (1-input command) has no effect 39

IS (2-input operation) outputs TRUE if
' first input is identical to second, ~
otherwise FALSE .16

LAST * : L ~ (1-input operation) outputs last
' ; character of an input word, or last
word of input sentence 7

LEFT ~(#-input command) "turtle" effector,
~ rotates turtle counterclockhise 39

’LINES LatE (1-input operat1on) output is sentence
~, - - of all instruction line numbers of :
procedure whose name is given as 1nput | 37

'VVLlsT'<:]? f~f‘d> g ‘f(command followed by procedure name) e
e e Y pes def1n1t10n of indlcated procedurei*gg;:wv*

L Sf* o oo~:;f¥:>e,f(command followed by entr) name) typesrd;fffde
ABBREVIATIO onggjjs;]all abbreviations in entry indicated

-~o¢*i”put*command) t'PeS e“tire user;[¢

LIST ALL
ABBREVIATIONS

LIST ALL
FILES

LIST ALL
NAMES

LIST ALL
PROCEDURES
LIST CONTENTS

LIST CONTENTS

LIST ENTRY
LIST FILE

LIST LINE

LIST NAMES

LIST
PROCEDURES

LIST TITLE
LOCAL

MAKE

MAXTMUM

’iiNUMQEQP{i‘"

Abbr.

LC

LE

LL

MAX

. impu

Description

(#-input command) types
tions in user workspace

(B-input command) types

(#-input command) types
user workspace

(P-input command) types

‘Page
all abbrevia-
24
all file names 27

all names in
25,30

definitions

of all procedures in user workspace 25

(P-input command) types

title lines of

all procedures in user workspace 25

(command followed by entry name) types
title lines of all procedures in entry

indicated

27

(command followed by entry name)dtypes

entire entry indicated

27

(command followed by file name) types ‘
list of entries in file indicated 27

(1-input command) valid

mode. Types line whose number is

given as input

only in define

22,23

(command followed by entry name) types
all names in entry indicated 26

(command followed by entry name) types
all procedure definitions in entry

indicated

(f-input command) valid

26

only in define

mode. Types title line of procedure

being defined

22

(command with any number of inputs)

only valid in a procedure. Makes all

names given as inputs local to the pro-
cedure containing this command 35

(2-input command) makes

the first input.

the name of the second input , 12

(2-input operation) inputs must be

integers. Outputs the greater of the

. imputs. o =
MIN (2-input operation) inputs must be
. integers. Outputs the lesser of the = -

s an intoger, otherwise FALSE

(1-inpu
(LaLip)

34

Abbr.

OF
QUTPUT op
PRINT P
PRODUCT PROD
QUOTIENT Quo
RANDOM

- REMAINDER REM
REQUEST RQ

RESET CLOCK
RIGHT

SAVE

SENTENCE S
SENTENCEP SP
SIZE

sTOP

k‘ (2 input. Operat10n) 1nputs must. be", b
: 1ntegers. Outputs the1r sum‘j_:;j ooanio 8

Description Page

(""noise" word) used for clarity; only
valid following procedure name 6

(1-input command) valid only in proce-
dure, Passes its input to procedure

{or operation or command) which called
current procedure 11

(1-input command) types its input on
teletype and returns carriage to
beginning of next line 3

(2-input operation) inputs must be
integers. Qutputs their product 6,8

{2-input operation) inputs wust beo
integers. Outputs their .nteger
quotient 8,34

(P-input operation) outputs a random

digit ' 8
(2-input operation) irputs must be
integers. Outputs renainder of their
integer division 34

(§-input operation) Hutputs literal
type-in from teletyre 32

(p-input command) rasets internal clock
to zero 33

{(#-input command® "turtle' effector,
rotates turtle rlockwise 39

(command followed by entry name) saves
user workspare as entry with name
indicated 26

(2-input cperation) outputs sentence
of its irputs 7

(1-inpre operation) outputs TRUE if
input is a sentence, otherwise FALSE 15

(l-input operation) outputs "size" of =
eriry given as input : 27

(p-input command) valld only in proce-
dure. Terminates execution of 1ts

‘procedure o HE T 381 ‘Vf

Abbr.
TEXT

THING
TIME

TITLE

TO

TOUCH LEFT

TOUCH . RIGHT

Description Page

(2-input operatlon) outputs text in .
procedure given by first input, with
line number given by second input 37

(1-input operation) outputs thing named
by the input 12

(#-input operation) outputs current

time 33
(command followed by title line) valid

only in define mode. Changes title of

procedure being defined to that
following 21

(command followed by title line) enters
define mode of procedure name following 4

(B-input operation) "turtle'" feedback,
outputs TRUE if left sensor has touched
obstacle, resets touch flag, otherwise
outputs FALSE 39

(g-input operation) 'turtle" feedback,
outputs TRUE if right sensor has touched
obstacle, resets touch flag, otherwise

- outputs FALSE 39

TRACE

TYPE

WAIT '
WORD W
WORDP Wp
ZEROP P

There are also several
. They are

(command followed by procedure name)
sets trace flag for procedure indicated 18,29, 3¢

(1-input command) types its input - 31

(1-input command) causes execution to
pause a number of seconds equal to its

‘input 34

(2-input operation) inputs must be words.

" Outputs the word formed by concatenating

them 7

(1-input operation) outputs TRUE if input
is a word, otherwise FALSE 15

(1- 1nput operation) outputs TRUE if
input is equal to zero, otherwise FALSE 34

abbreviations for parts of commands.,

_ABB: ABBREVIATION

‘xABBs::,~ABBan1AT;0Ns‘

"Q*ER.,;

ERASE

| ~fﬁPRS'va PROCEDURES

/EMPTY/
/CONTENTS/
/LINE FEED/

/CARRIAGE RETURN/

/FILES/
/FORM FEED/

/BLANK/
/BELL/
/QUOTE/
/SK1pP/

RE TURN
RUB OUT
LINE FEED

BREAK

\
RCTRL-W

#CTRL-N
#CTRL-R

#CTRL-B
RCTRL-G
“CTRL-L

Reserved Names

Description

the empty thing
a sentence of user-defined procedure names

a line feed without carriage return when
typed

a carriage return without line feed when
typed

a sentence of file names

moves paper to a new page when typed on
teletypes having form feed feature

a blank space when typed
rings a bell when typed
a quote mark

a new line.(carriage return and line feed)
when typed

Special Keys

gives line just typed by user to LOGO
erases line being typed

carriage goes to next line without
terminating current line

interrupts execution
deletes last character typed
deletes. last word. typed

only valid in EDIT LINE mode,
word of line being edited

only valid in EDIT LINE mode.
of line being edited

Gets next

Gets rest

same as'/BLANK/

same as /BELL/

same as /FORM,FEED/

~V“thls notat10n 1nd1cates that the CTRL key 1s preSSed
o s1mu1taneously w1th 1nd1cated 1etter._kf , ,

Page

19
38

31

31
38

31
31
34
40

3,20

3,30

20 |
20

22

22

Special Characters

used to
used to

~
v/

“noise"
used to
typed by
typed by

> V4

typed by
indicate

as
P

typed by
user typ

Description

deiimit literals

delimit naines

word,

used for clarity

delimit comments

LOGO
LOGO
LOGO
line
LOGO
e-in

to indicate user control
to indicate define mode

at beginning of line to
has been "RUBbed OUT"

to indicate REQUEST needs

Page

5,13
6,11
40

5,22
20

32

3.

LOGO Refcvence anual
Addendum No. 1

E -

~
[N

Slash (/) has been replaced by colon cr dots (:) as the delimiter

“for LOGO names.

;The command LOCAL now takes onlv a single input (instead of "an

arbitrary number as before).

The number sign (#) embedded in a literal TYPEs and PRINTs as a

"blank space., Thus,

*HA&E AT VARE4B" »
«L1ST_ALL_NAMES '
TAD 1S VARLds™ '

C*PRINT A:
A B

' TheTspecial;actions : LINEFEED:, :BELL:, :CARRIAGE RETURN:,
tFORMPEED:, and :SKIP: are now also available as the zero-input

commandS‘LINLFEID BELL, RETURN, FORMFEED, and SKIP.

‘The mult;-word commands IF TPUL I¥ FALSE, GO TO LINE, RESET

CLOCK, and the multi-word operaLjons TOUCH LEFT, and TOUCP hLGHT
have been changed to the single words IRTRUE, IPPALSE, GOTOLINE,

' RESETCLOCV TOUCHLEFT;‘and TOUCHR1GHT.

A one- input command, TYPEIN, has been added.‘ TYPEIN "A" Las the

- same effect as MALE HAM REQUEST

L «TYPEIN "SAMY
XT AM SAM
 «PRINT :SAM:

1AM SAM
+

. The character > has been replaced by the character € to indicate
.f"readlness in define mode,

LOGO Reference Manual
Addendum No, 2

1. The prefix arithmetlc operations SUM, DIFFERENCE, PRODUCT,
QUOTIENT have been supplemented by their infix forms ty -y ¥, /.,
> is now the infix form of GREATERP and botlh infix (<) and
prefix (LESSP) versions of the predicate strictly-less-than
have also been implenented. LEQUALP and the equivalont 4ntrix =
are new two-input predicates which test numerical eauality. :
(EQUALP OF @ AND §g 1is "TRUE" whereas IS OF B AND g¢ is "FALSE",)

Expressions containing only prefix operations and commands are

parsed from left to right as before (see LOGO manual). Infix

operations have their usual meanings in expressions. For ;

example, 2 + 3 * I gives 11l and 3 = 1 + 2 gives "TRUE". (Using

a simple left-to-right parsing, this last expression would

have Leen interprcted as (3 =1) + 2, i.e., "FALSE" + 2 and

thus would have resulted in an error message.) Parsing is

straightforwardly described by giving different precedence
 ranking to different classes of operators, as-in the following

table. :

prefix operators

Thus, ¥ and / have identical precédence which is higher than
-the precedence of + and -, : .

Now we can easily state the general LOGO parsing rule. Parsing
is st111 strictly left-to-night except for the difficult case
where there are two possible operators with which to assoélate
an input. This is the case where an input is preceded by any ,
(prefix or infix) operator and is followed by an infix operator,
Symbolically: Left-Op Input Right-Op., (Fonr example in :
PRINT 2 + 3 we want the input 2 to go with the operator +, not
-with the operator PRINT.) ‘The gencral rule is: the input goces
with the operator on its left (Left-Op) unless the precedence
of that operator is less than the precedence of the inftix
operator on the right. The following examples show the use
of the rule.) ‘ , '

C«PRINT 2 + 3 | ;
. «PRINT 2 + 3 e
 PRINT BOTH 3 < 4 AND 3 >4

1+

12 4“1 6

Addendum No., 2

+PRINT WORD 1 AND 1 * WORD 2 AND 2

PRSP L-T. O L. 1 SlusfD - Sy

122

<~PRINT BUTLAST 13 ¥ 4
5

“«PRINT H * BUTLAST 13
4y

Parentheses can. still be used to enclose valid LOGO expressions
(sece Pp. 6 and 11, LOGO Manual). Now, however, they can change
the order of parsing.

“<PRINT (BUTLAST 13) # 4
b

“PRINT C(WORD 1 AND 1) ¥ (WORD 2 AND 2)
242

Finally, a + or - which is not preceded by an input is taken
as a unary + or -,

“«PRINT ==—=== 1
-1

There are some difficulties, though,

“PRINT SUM -1 -1
1 INPUT MISSING FOR SUM

The second - was taken as binary resulting in PRINT SUIT -2,
Our parsing rule was chosen to minimize such difficulties.
One should, when possible, avoid the use of mixed prefix and
infix expressions which are not transparent. When writing
mixed cxpressions, the use of parentheses or noise words
should be encouraged to increase transparency. Thus, the
previous example could be correctly written as

“PRINT SUM -1 AND -1
-2

The one-input operation NOT outputs "TRUE" if the input is
Y"PALSE" and "FALSE" if the input is "TRUE". Any other input
gives an error message.

" WORDS and SENTENCES are operations which COncatenate any

number of inputs to form a LOGO word or a LOGO sentence,

 These operations keep taking inputs until a right parenthesis

occurs or the line ends. Their built—in abbreviations are

”f[+PR1NT SENTENCES "A" "e" "c" "o", '
ABCO

“Ts,_+pR1NT (woRDs 1 z 3),+ (uoaos 32 1)
‘l"’*

‘1;51:

Addendum No, 2

4

An additional form of conditional: IN THEN ELSE
has been umplemented. The IF command Ts followed by an .
expression which must evaluate to "TRUE" or "PFALSE"., I it
is "PRUE", then the command following THEN is executed. If
it is "FALSEY, the command following FLSE is executed. The

word THEN 1s a noise word which may be omitted. The LLSE

and subsequent command may also be omitted. In that case,
"FALSE" results in a null action.

«l1F BOTH 1 > 2 AND 2 < 1 THEN PRINT "“HELP" ELSE PRINT "WHEW!
WHEW .

<1F 2 + 2 = 4 PRINT SUM OF 1 AND 2
3 L

«TO REVERSE :WORD:
1§ IF EMPTYP :WORD: OUTPUT :EMPTY: ELSE OUTPUT WORD OF

CLAST :WORD:) (REVERSE BUTLAST :WORD:)
END

